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A nanoelectromechanical device based on magnetic exchange forces and electron spin flips induced by a
weak external magnetic field is suggested. It is shown that this device can operate as a new type of single-
electron “shuttle” in the Coulomb blockade regime of electron transport.
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Today we are witnessing an interesting development
towards spintronics, i.e., electronics based on the interplay
between magnetism and the quantum dynamics of the spin
of electrons (see the reviews in Ref. [1]). In the context of
nanoelectromechanics [2], an interesting question is, there-
fore, to what extent the spin of the electron, with its
typically long coherence times, can replace the charge as a
vehicle for electromechanical energy transduction in,
e.g., a nanoelectromechanical single-electron transistor
(NEM-SET) shuttle device [3,4]. In this Letter we show
that the spin can indeed play this role.
Our model “spintro-mechanical” shuttle device, shown

in Fig. 1, comprises two ferromagnetic leads (for now
assumed to be 100% spin polarized “half metals” [5]) with
antiparallel magnetization and a quantum dot with a single
spin-degenerate electronic level. The exchange interaction
between the magnetic leads and an electron spin on the dot
[6,7] generates a mechanical force that acts on the movable
dot. If strong enough, this force can significantly modify
electron transport through a mechanically damped shuttle
device operating near mechanical equilibrium (with dot
vibrations of small amplitude) [8]. Here we will show that
for low enough mechanical damping the strongly non-
equilibrium phenomenon of single-electron shuttling may
be triggered by a weak external magnetic field.
Spin accumulation on the dot can be controlled in two

ways: (i) by injecting spin-polarized electrons from the
source electrode, and (ii) by flipping the spin on the dot.
Below, we will show that a combination of these two
mechanisms can lead to a spintro-mechanical instability
with respect to the onset of mechanical vibrations of the dot
if both a bias voltage (which leads to spin injection) and a
weak, perpendicular external magnetic field (which induces
spin flips) of appropriate strength are applied.
A particularly transparent picture of how spintro-

mechanics affect shuttle vibrations emerges in the limit
of the weak magnetic field H and large electron tunneling

rate ΓSðDÞ between dot and source- and drain electrodes. In
order to explore this limit, where ΓS ≫ ω ≫ ðμH=ℏÞ2=ΓD
and ω=2π is the natural vibration frequency of the dot, we
focus first on the total work done by the exchange force
F as the dot vibrates under the influence of an elastic force
only. In the absence of an external magnetic field [9] the dot
is in this case occupied by a spin-up electron emanating
from the source electrode (see Fig. 1). This spin is a
constant of motion and hence no electrical current through
the device is possible since only spin-down states are
available in the drain electrode. During the oscillatory
motion of the dot the exchange force is therefore always
directed towards the source electrode while its magnitude
only depends on the position of the dot, F ¼ F0ðxÞ. As a
result, no net work is done by the exchange force on the
dot. This is because contributions are positive or negative
depending on the direction of the dot’s motion and cancel
when summed over one oscillation period. A finite amount
of work can only be done if the exchange force deviates
from F0ðxÞ as a result of spin flip processes induced by the
external magnetic field. Such a deviation can be viewed as

S

D

+

H
U/2

T (x) T (x)S

S

D

D

FIG. 1 (color online). Sketch of the nanomagnetic device
discussed in the text: a movable quantum dot, modeled as a
single spin-degenerate electron level and subject to an external
magnetic field, is coupled to two leads with antiparallel
magnetization.
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an additional random force FH that acts in the opposite
direction to F0ðxÞ. In the limit of a large tunneling rate,
ΓSðDÞ ≫ μH=ℏ, and small vibration amplitude a spin flip
occurs with a probability ∝ ðμH=ℏÞ2=ðωΓDÞ during one
oscillation period and is instantly [10] accompanied by the
tunneling of the dot electron into the drain electrode,
thereby triggering the force FH. The duration of this force
is determined by the time δt ∼ 1=ΓSðxðtÞÞ it takes for the
spin of the dot to be “restored” by another electron
tunneling from the source electrode.
The spin-flip induced random force FH ¼ −F0ðxÞ is

always directed towards the drain electrode. Hence, its
effect depends on the dot’s direction of motion: as the dot
moves away from the source electrode it will be accel-
erated, while as it moves towards the source it will be
decelerated. Since a spin flip may occur at any point on the
trajectory one needs to average over different spin-flip
positions in order to calculate the net work done on the dot.
The result, which depends on the competition between the
effect of spin flips that occur at the same position but with
the dot moving in opposite directions, is nonzero because δt
is different in the two cases. As the dot moves away from
the source electrode the tunneling rate to this electrode will
decrease while as the dot moves towards the source it will
increase. This means that the duration of spin-flip induced
acceleration will prevail over the one for deceleration. As a
result, in weak magnetic fields, the dot will accelerate with
time and one can expect a spintro-mechanical shuttle
instability in this limit.
The situation is qualitatively different in the opposite

limit of strong magnetic fields, where ΓSðDÞ ≪ μH=ℏ and
the spin rotation frequency therefore greatly exceeds the
tunneling rates. In this case the quick precession of the
electron spin in the dot averages the exchange force to zero
if one neglects the small effects of electron tunneling to and
from the dot. If one takes corrections due to tunneling into
account (having in mind that the source electrode only
supplies spin-up electrons) one comes to the conclusion
that the average spin on the dot will be directed upwards.
This results in a net spintro-mechanical force in the
direction opposite to that of the net force occurring in a
weak magnetic field limit. As a result, in strong magnetic
fields one expects a deceleration of the dot. Therefore, there
will be no shuttle instability for such magnetic fields.
As we have discussed above, spin-flip assisted electron

tunneling from source to dot to drain in our device results in
a magnetic exchange force that attracts the dot to the source
electrode. It is interesting to note that this is contrary to the
effect of the Coulomb force in the same device [11].
Indeed, since the Coulomb force depends on the electric
charge of the dot it repels the dot from the source electrode.
Hence, while the dot is empty as the result of a spin-flip
assisted tunneling event from dot to drain, an “extra”
attractive Coulomb force FQ is active. An analysis fully
analogous with our previous analysis of the “extra”

repulsive magnetic exchange force FH leads to the con-
clusion that the effect of the Coulomb force will be just the
opposite to that of the exchange force. If the exchange force
is sufficiently weak, this means that in the Coulomb
blockade regime there is no shuttle instability in the limit
of a weak magnetic field, while in strong magnetic fields
electron shuttling occurs. Our full analysis below confirms
the predictions made above for some limiting cases using
only qualitative arguments.
The Hamiltonian Ĥ ¼ Ĥl þ Ĥd þ Ĥv þ Ĥt of our sys-

tem has four terms. The first term, Ĥl, describes non-
interacting spin polarized electrons in the leads and the last
term, Ĥt describes spin-conserving tunneling of electrons
between dot and leads with position-dependent tunneling
amplitudes TjðxÞ ¼ Tj expðjx=λÞ, where λ is the dimen-
sionless tunneling length and j ¼ ðS;DÞ ¼ ð−1;þ1Þ. The
second term is the quantum dot Hamiltonian, Ĥd, which
reads

Ĥd ¼
X
σ¼↑;↓

ε0nσ − JSðxÞðn↑ − n↓Þ − JDðxÞðn↓ − n↑Þ

−
gμH
2

ða†↑a↓ þ a†↓a↑Þ −Ua†↑a
†
↓a↑a↓: (1)

Here the operator a†σðaσÞ creates (destroys) an electron on
the dot with energy ε0 and spin σ, nσ ¼ a†σaσ and JjðxÞ ¼
Jjexpðjx=λÞ > 0 is the strength of the ferromagnetic
exchange coupling [12], H is the external magnetic field
and the intradot electron correlations are characterized
by the Coulomb energy U. Vibrations of the dot are
described by the harmonic oscillator Hamiltonian
Ĥv ¼ ðℏω=2Þðp2 þ x2Þ, where ½x; p� ¼ i and x is the
displacement operator for the dot normalized to its zero-
point oscillation amplitude x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
, m being the

mass of the dot. The electrons in each lead are held at a
constant electrochemical potential μS;D ¼ ∓eV=2 (relative
to the Fermi level), where V ≫ j2ε0=ej is the bias voltage.
We restrict ourselves to the Coulomb blockade regime,
U ∼ e2=2C > jeV=2 − ε0j (where C is the capacitance of
the dot) and zero temperature [13], so that double occu-
pancy of the dot is forbidden. The electron density of states
νj ¼ ν in the leads is assumed to be independent of energy.
In what follows we will consider the symmetrical case,
TS ¼ TD ≡ T, JD ¼ JS ≡ J.
The coherent dynamics of our system is governed by the

Hamiltonian Ĥ and involve the quantum evolution of the
states of the vibrational, charge and spin degrees of free-
dom. The corresponding set of equations for the density
matrix of the mechanical subsystem can be derived,
following Refs. [14] and [15], by treating the tunneling
Hamiltonian as a small perturbation [16]. Using this
approach one can show that without a magnetic field the
mechanical subsystem is characterized by an equilibrium
density matrix that describes small-amplitude oscillations
of the dot in the vicinity of the minima of the potential
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energy. However, when a weak magnetic field H is applied
this state becomes unstable with respect to the onset of
oscillations with an increasing amplitude if double occu-
pancy of the dot is forbidden by a Coulomb blockade. This
instability eventually leads to a stationary state of the
shuttling dynamics [17], which can be conveniently ana-
lyzed by using the Wigner function representation of the
density operators [14]. This approach allows one to
calculate the Wigner distribution function Wρðx; pÞ for
the vibrational degree of freedom to lowest order in the
small parameters 1=λ and α ¼ 2J=λℏω > 0, where α
measures the ratio of the exchange force and the mechani-
cal restoring force corresponding to a displacement x0. We
find [18] that the relevant Wigner function,

Wð0Þ
Σ ðAÞ ¼ 1

2π

Z
2π

0

dφWρðA sinφ; A cosφÞ; (2)

which gives the probability distribution of the vibrational
amplitudes A in a stationary regime, for A ≪ λ solves the
stationary Fokker-Planck equation

∂
∂A

�
AD0

∂Wð0Þ
Σ

∂A
�
− ∂
∂A ðA2D1W

ð0Þ
Σ Þ ¼ 0. (3)

Here the drift and diffusion coefficients contain the factors

D1 ¼
α

λ

h2Γ3

Γ2 þ 3h2
3Γ2 þ 3 − h2

Q0ðΓ; hÞ
and (4)

D0 ¼
h2Γ

Γ2 þ 3h2

�
α2Q1ðΓ; hÞ þ λ−2Q0ðΓ; hÞ

2Q0ðΓ; hÞ
�
; (5)

respectively, where

Q0ðΓ; hÞ ¼ ð1 − h2 − 2Γ2Þ2 þ Γ2

4
ðΓ2 þ 3h2 − 5Þ2; (6)

Q1ðΓ; hÞ ¼
�
1þ 9Γ2

4

�
ð1þ h2 þ 2Γ2Þ − 5Γ4

4
. (7)

In Eqs. (4–7) all energies have been normalized with
respect to the energy quantum ℏω of the mechanical
vibrations: ℏω→ 1, gμH=ℏω→ h, Γ=ω→ΓðℏΓ¼2πν∣T∣2
is the level width).
For A ≪ 1 the solution of Eq. (3) takes the form of a

Boltzmann distribution function, Wð0Þ
Σ ∼ expð−βEÞ, where

E ¼ A2=2 is the dot’s vibrational energy and 1=β, with

β ¼
�
2αΓ2

λ

�
h2 − 3Γ2 − 3

α2Q1ðΓ; hÞ þ λ−2Q0ðΓ; hÞ
; (8)

is an effective temperature. Since the functions Q0 and Q1

are positive, the sign of the effective temperature is
determined by the relation between the magnetic field,
level width, and vibration quantum. In particular, the

effective temperature is negative at small magnetic fields,
jHj < Hc, where (reverting to dimensional varia-
bles) gμHc ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðΓ2 þ ω2Þ

p
.

A negative β implies that the static state of the dot
(A ¼ 0) is unstable and that a shuttling regime of charge
transport (A ≠ 0) is realized. It is interesting to note that β is
finite even as h → 0. This apparent paradox may be
resolved by considering the Fokker-Plank equation in its
time-dependent form and noting that the rate of change of
the oscillation amplitude at the instability is defined by the
coefficient D1. This coefficient scales as D1ðhÞ ∝ h2 as
h → 0 and therefore the shuttle phase is only realized
formally after an infinitely long time in this limit. As a
function of magnetic field D1 has a maximum,
Dmax

1 ¼ 0.6ðα=λÞΓ−1, at hopt ¼ 0.4Γ. Therefore, optimal
magnetic fields are in the range 0.1–1 T if
ℏΓ ¼ 10–100 μeV. For high magnetic fields, jHj > Hc,
there is no shuttling regime (at least not with a small
vibration amplitude, A ≪ 1) and the vibronic regime,
corresponding to small fluctuations of the quantum dot
around its equilibrium position, is stable.
The amplitude of the shuttle vibrations that develop as the

result of an instability is still described by Eq. (3) for the
Wigner distribution function. However, for large amplitudes,
A≳ 1, the drift- and diffusion coefficients A2D1 and AD0

can no longer be evaluated analytically. Fortunately, it is
sufficient to know the amplitude and magnetic field depend-
ence of D1 for a qualitative analysis. This is because a
positive value of the drift coefficient means that energy is
pumped into the dot vibrations, while a negative value
corresponds to damping of the vibrations. Therefore, mag-
netic fields for whichD1ðAÞ ¼ 0 andD0

1ðAÞ < 0 correspond
to a stable stationary state of the dot and a local maximum of
the Wigner function. Based on this picture one concludes
[18] that at low magnetic fields, h < hc1, a shuttling regime
with a large vibration amplitude is realized, while at high
magnetic fields, h > hc1, the situation is more complicated.
Here one of two (hc1 < h < hc2) or three (h > hc2) shuttling
regimes with different amplitudes can be stable depending
on the initial conditions (see also Ref. [15]). If the dot is
initially in the static state (A ¼ 0) a stable shuttle regime
only appears for h < hc, as already mentioned.
The electron-spin induced spintro-mechanical coupling

discussed above is complementary to the conventional
electron-charge induced electromechanical coupling. In
order to compare their relative importance we have
extended the studies in Ref. [15] to the Coulomb blockade
regime, eV < U, that is of interest here. We find that in the
limit Γ ≫ 1 and for small oscillation amplitudes A the drift
coefficient induced by the electromechanical coupling has
the form A2DðeÞ

1 with

DðeÞ
1 ¼ − d

αΓ2

ð2h2 − Γ2Þðh2 þ Γ2Þ
h2 − 3Γ2

D1; (9)
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where D1 is given by Eq. (4), d ¼ eEx0=ℏω, and E is the
electric field induced by the potential drop between the
leads. Therefore, if h ≪ Γ, the electromechanical coupling
—in agreement with our initial qualitative analysis—
generates a negative contribution to the drift coefficient
and hence additional damping in the mechanical subsys-
tem. In the limit of small magnetic fields a shuttle
instability still occurs if d < 3α, i.e., if eE < 6J=λ.
However, since E ∝ V the electromechanical coupling must
dominate above some critical voltage Vc [19] and suppress
the shuttle regime. In the limit of high magnetic field,
where the spintro-mechanical coupling increases the damp-
ing in the mechanical subsystem, Fig. 2 shows that the
electromechanical coupling generates a shuttle instability
for high enough electric fields.
Obviously, a shuttle instability can only occur if more

energy is pumped into the mechanical subsystem than it
dissipates to the environment. Dissipation can readily be
taken into account phenomenologically by including a
Lindblad term [14] in the equation of motion for the
density matrix. The result is a renormalization of the drift
coefficient D1 of Eq. (4) that changes the instability
criterion from A2D1 > 0 to A2D1 > γ, where γ is the
Lindblad dissipation coefficient. For the maximum value
Dmax

1 , which as shown above obtains for hopt ¼ 0.4Γ, the
latter criterion for a spintromechanical shuttle instability
leads to the condition Q > ðλ=x0Þ2ðℏΓ=JÞ ¼ mωΓλ2=J for
the quality factorQ ∼ 1=γ. If the condition that the leads are
100% spin polarized (η ¼ 1) is relaxed, additional dis-
sipation will be induced due to spin-conserving transitions
from source to drain. As a result, the drift coefficient will
scale as ηA2D1 with η < 1, which will require a corre-
spondingly larger quality factor for the instability to occur.
An experimental setup such as the one used in Ref. [20]

to study Kondo-assisted tunneling via a C60 molecule
would seem well suited to observe the phenomenon
discussed above. In that experiment one found that

coupling to two ferromagnetic nickel electrodes produced
a local magnetic exchange field on the C60-quantum dot in
excess of 50 T [J ∼ 2.5 meV] with ℏΓ ∼ 30 meV. In a
similar setup, but with nonmagnetic electrodes, nanome-
chanical oscillations of a C60 molecule trapped in an
approximately 1 nm wide gap were detected with a
frequency of about 1.2 THz (ℏω ∼ 5 meV) [21].
Therefore, taking λ ∼ 0.1 nm and η ∼ 0.1, we predict that
by applying a weak magnetic field one can generate
mechanical oscillations with a frequency of the order of
1 THz and an amplitude of order λ ∼ 0.1 nm if the quality
factor Q is larger than 100.
In summary, we have shown that a nanoelectromechan-

ical device based on magnetic exchange forces and electron
spin flips, induced by a weak external magnetic field, can
operate as a single-electron shuttle. By using a simple
model for charge transport through a single-level vibrating
quantum dot placed between two magnetic leads, we have
demonstrated that a shuttle regime of electron transport is
realized at low magnetic fields (μH ≪ ℏΓ in the adiabatic
limit Γ ≫ ω). Under these conditions the corresponding
electrically driven shuttle is still in a vibronic phase (small
fluctuations around its equilibrium position). The high
sensitivity of the suggested nanoelectromechanical device
to a weak external magnetic field, makes the “magnetic
shuttle” a promising tool for studying quantum operations
in the context of spintronics.
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