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A new type of spectroscopy for high-resolution studies of spin waves that relies on resonant scattering
of hard x rays is introduced. The energy transfer in the scattering process is encoded in the precession of
the polarization vector of the scattered photons. Thus, the energy resolution of such a spectroscopy is
independent of the bandwidth of the probing radiation. The measured quantity resembles the intermediate
scattering function of the magnetic excitations in the sample. At pulsed x-ray sources, especially x-ray
lasers, the proposed technique allows us to take single-shot spectra of the magnetic dynamics. The method
opens new avenues to study low-energy nonequilibrium magnetic processes in a pump-probe setup.
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The enormous potential of fast spin manipulation for
applications in information storage, processing, and retrieval
stimulates a growing interest in the excited states and
nonequilibrium properties of magnetic structures. The
elementary quanta of excitations in an ordered ensemble
of magnetic moments are magnons, also known as spin
waves when described classically. Magnetic excitations are
of particular interest in magnetic systems with competing
interactions. For example, geometrically frustrated magnets
exhibit persistent magnetic excitations even at lowest tem-
peratures with most of their spectral weight shifted toward
low energies [1,2]. This has been shown for crystalline
systems [3,4] and remains an interesting subject to be studied
in artificially structured systems [5,6]. Moreover, the emerg-
ing field of spin-wave engineering, also known as magnonics
[7–10], relies on the understanding of low-energy magnetic
excitations in nanostructured systems.
For a precise measurement of the magnetic excitation

spectrum, high-resolution spectroscopic techniques are
required. In the optical regime, Brillouin light scattering
allows us to probe magnons with outstanding energy reso-
lution [11–13]. The use of visible light, however, prevents
the access to high momentum transfers and thus limits the
range of accessible length scales. Dimensions down to
interatomic distances can be reached via resonant inelastic
x-ray scattering (RIXS) or inelastic neutron scattering (INS).
While single-magnon spectroscopy with x rays has been
demonstrated just recently [14], INS for magnon studies has
been an established technique for decades. In all of these
methods, the energy resolution is determined (and limited)
by the energy spread of the incoming particles (assuming a
perfect analyzer); thus, further bandwidth reduction to
achieve better energy resolution comes at the expense of
the signal-to-noise ratio. Because of limited instrumental
resolution, RIXS is restricted to energy transfers above
≈ 50 meV so that the low-energy regime of magnetic
excitations is still the domain of INS.

In fact, a very elegant decoupling of the energy resolution
from the bandwidth of the probing particles has been
achieved in the method of neutron spin echo (NSE) spectro-
scopy [15]. Small energy transfers upon inelastic scattering
are encoded as phase shift in the precessing polarization of
the neutrons. In combination with momentum-resolved
triple-axis spectrometry [16], the dynamical structure factor
of magnons can be effectively probed with μeV resolution
[17,18], although the energy bandwidth of the incident
neutrons is much larger. As a time-of-flight method, the
NSE technique relies on the finite rest mass of the neutron.
Therefore, at first sight, this technique does not seem to be
directly transferable to photons.
In this Letter, we introduce a new type of inelastic x-ray

spectroscopy to probe magnetic excitations that exhibit
similarities to NSE, the basic principle of which is
illustrated in Fig. 1. The technique described here relies
on resonant magnetic scattering of x rays in the presence of
x-ray linear dichroism (XMLD). Under these conditions a
magnetic sample with a spin wave of frequency Ω exhibits
properties of a half-wave plate rotating with frequency Ω.
A half-wave plate reverts the angular momentum of
incident circularly polarized light; thus, it constitutes the
angular variant of a mirror that reverses the linear momen-
tum of the light that is backreflected from it. In the same
fashion, as photons reflected from a moving mirror
experience a linear Doppler shift of ΔE ¼ q · v, the
photons transmitted through a rotating half-wave plate
experience an angular Doppler shift [19–24] of
ΔE ¼ L ·Ω, with q and L being linear and angular
momentum transfer and v and Ω being linear and angular
velocity, respectively. Note that a necessary condition for
the linear and angular Doppler effect is either a broken
translational invariance (interfaces, lattice planes) or a
broken rotational invariance (anisotropy, optical or mag-
netic axes), respectively. While the linear Doppler effect
forms the basis for vibrational spectroscopies, we exploit
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here the angular Doppler effect for a new type of spec-
troscopy in the x-ray regime to probe spin waves within a
frequency range reaching up to 100 Ghz.
In the following, we evaluate the scattering of linearly

polarized x rays from magnetic samples that carry spin-
wave excitations. We first concentrate on small momentum
transfers q so that we can use the forward-scattering
amplitude to describe the scattering process that will be
treated in the kinematical approximation. The spin wave
is represented by a magnetization vector m ¼ mðtÞ that
precesses on a cone around the direction of the effective
magnetic field, as illustrated in Fig. 1. The sample and
optical elements like polarizers are described in the Jones
matrix formalism by (2 × 2) matrices for a given polari-
zation basis (e.g., linear or circular) with unit vectors
(ϵμ, ϵν). We assume the photon energy being tuned to a
resonance (electronic or nuclear) that is sensitive to the
sample magnetization which lifts the degeneracy of the
magnetic sublevels due to a spin-orbit interaction of
electronic levels or a magnetic hyperfine interaction of
nuclear levels.
In a resonant inelastic scattering experiment at photon

energy E ¼ ℏω0, the intensity scattered into an energy
interval dE and solid angle dΩ is proportional to the
double-differential cross section:

Ifi ∼
d2σ

dEdΩ
¼ jfðq;ω;ω0; ϵf; ϵiÞj2Sðq;ωÞ; (1)

where fðq;ω;ω0; ϵf; ϵiÞ is the coherent atomic scattering
amplitude for a given energy transfer ℏω, momentum

transfer q ¼ kf − ki and change of polarization ϵi → ϵf.
Sðq;ωÞ is the dynamical structure factor of the spin wave
with frequency ω and momentum q. The amplitude f is
derived from a 2 × 2 matrix that accounts for the polari-
zation dependence of the scattering process:

fðq;ωÞ ¼ 2π

k0

X
i

ϱiMiðq;ωÞ; (2)

where the sum runs over all atomic species in the sample. For
simplicity, we drop the q dependence in the following and
assume that the scattering proceeds close to the forward
direction.Mi is then the 2 × 2matrix of the coherent forward
scattering length of the ith atomic species, and ϱi is the
numberdensityof these atoms. It is convenient todecompose
MðωÞ into a nonresonant partEðωÞ that describes electronic
charge scattering (see the Supplemental Material [25]) and a
part NðωÞ that contains the contributions from resonant
scattering:

MðωÞ ¼ EðωÞ þ NðωÞ: (3)

Withm denoting the unit vector of the magnetization at the
position of the atom, the resonant atomic scattering length
NðωÞ for an electric dipole transition (L ¼ 1) is typically
written as

½NðωÞ�μν ¼
3

16π
fðϵμ · ϵνÞ½Fþ1 þ F−1�

− iðϵμ × ϵνÞ ·m½Fþ1 − F−1�
þ ðϵμ ·mÞðϵν ·mÞ½2F0 − Fþ1 − F−1�g; (4)

withF0,Fþ1, andF−1 being the energy-dependent oscillator
strengths for resonant transitions between magnetic sub-
levels with Δm ¼ −1; 0;þ1. The three terms in Eq. (4)
represent different polarization dependences. The first
term is not sensitive to the samplemagnetization.The second
term describes circular dichroism (XMCD) because it
depends on the difference between the resonant scattering
amplitudesFþ1 andF−1.Since itspolarizationdependence is
ϵμ × ϵν ¼ k0, it describes orthogonal scattering between the
states in thepolarizationbasis.The third term is the important
one here. It describes XMLD (see Supplemental Material
[25]) and is responsible for the violation of rotational
invariance that gives rise to the angular Doppler effect on
which the method relies.
It is convenient to express Eq. (4) in terms of 2 × 2

matrices within a circular polarization basis. With
C� ¼ ð3=16πÞðFþ1 � F−1Þ and D ¼ ð3=32πÞð2F0−
Fþ1 − F−1Þ, we obtain for the scattering matrix (for
derivation, see the Supplemental Material [25]):

FIG. 1 (color online). Resonant scattering of linearly polarized
x rays from a sample that carries a spin wave represented by a
precessional motion with frequency Ω shown in the upper left.
X-raymagnetic linear dichroism lets the spinwave act as a rotating
half-wave plate that imposes frequency shifts of þ=− 2Ω on the
right- or left-circular polarization components of the scattered x
rays, respectively.After passage through a linear analyzer, a signal
is observed that is modulated with frequency 2Ω. In the general
case of an arbitrary spin-wave spectrum, the signal is proportional
to the intermediate scattering functionSðq; tÞ that probesmagnetic
dynamics over correlation distances λS ¼ 2π=q.

PRL 112, 117205 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

117205-2



M¼ðEþCþþm2⊥DÞIþ2m∥C−PF−m2⊥DP1=2ðϕÞ

with PF¼
�
1 0

0 −1
�
; P1=2ðϕÞ¼ i

�
0 e−i2ϕ

−ei2ϕ 0

�
; (5)

where I is the unit matrix and P1=2ðϕÞ is the Jones matrix of
a half-wave plate with the fast axis oriented at an angle ϕ
relative to the horizontal (see Fig. 1).
In a spin wave, i.e., a collective motion of a large number

of atomic magnetic moments in the sample, the magneti-
zation mðtÞ performs precessional motion with angular
frequency Ω around the effective fieldHeff , as illustrated in
Fig. 1. In order to describe the scattering process from such
an ensemble of spins, we need to perform a transformation
of the scattering matrix from the corotating frame into the
fixed laboratory frame. This is accomplished via the
transformation

MðΩÞ ¼ RðΩÞMð0ÞR−1ðΩÞ: (6)

RðΩÞ is the expectation value of the operator that generates
the precessional motion of the magnetization, given by (see
the Supplemental Material [25])

RðΩÞ ¼
�
eiΩ·κt 0

0 e−iΩ·κt

�
: (7)

where κ is a unit vector along the photon wavevector k0.
Applying this transformation to the scattering matrix in
Eq. (5) leaves the first two terms invariant but changes and
introduces a time dependence of the third one:

RðΩÞP1=2ðϕÞR−1ðΩÞ ¼ P1=2ðϕ0 þΩ · κtÞ; (8)

i.e., the spin wave acts like a half-wave plate that rotates
with angular velocity Ω · κ. The scalar product accounts for
the projection of the spin precession cone on the incident
wave vector. To simplify the following discussion, we
assume that Ω∥κ so that Ω · κ ¼ Ω and set ϕ0 ¼ 0.
In experiments with synchrotron radiation the incident

field, A0 is usually linearly polarized in the horizontal
plane; i.e., A0 ¼ AH ¼ ϵHeiωt. To evaluate the amplitude
of the scattered field AS ¼ MAH, we write the incident
horizontal polarization as superposition of left- and right-
circular polarization; i.e.,AH ¼ ðA− þ iAþÞ=

ffiffiffi
2

p
to obtain

the following contribution from the third term in Eq. (5):

½P1=2ðΩtÞAH�circ ¼ iei2ΩtA− þ e−i2ΩtAþ: (9)

The right- or left-circular component of the incident
linear polarization was converted into right- or left-circular
polarization and shifted up (down) in frequency by 2Ω.
This means that the energy transfer 2Ω from the spin wave
to the scattered photon is encoded in the relative frequency
shift of the two circular components. Note that this result is
independent of the carrier frequency ω so that the effective

energy resolution of the method is decoupled from the
frequency bandwidth of the incident radiation. Writing
Eq. (9) in the linear basis yields

½P1=2ðΩtÞAH�lin ¼ cos 2ΩtAH − sin 2ΩtAV; (10)

which shows that the polarization performs a precessional
motion in space, illustrated in Fig. 2(a). Since two
orthogonal polarizations do not interfere with each other,
this frequency shift is not directly observable. The inter-
ference can be induced, however, if the radiation is
analyzed by a linear polarizer that projects parallel polari-
zation components. The scattered fieldAS behind a vertical
analyzer with Jones matrix PV is given by AS ¼ PVMAH.
By inserting M given by Eq. (5) with ϕ ¼ 2Ωt, we obtain
(see the Supplemental Material [25])

FIG. 2 (color online). (a) The photon polarization of the x rays
scattered with momentum transfer q from the spin-wave ex-
citation (see Fig. 1) performs a precessional motion in space with
a spatial period of S ¼ πc=Ω. The scattered photons are analyzed
with a vertical polarizer that projects the vertical component of
the scattered radiation, revealing the intermediate scattering
function Iðq; t ¼ L=cÞ as function of the distance L from the
sample. (b) Employing an asymmetrically cut analyzer crystal
(Bragg angle ΘB ≈ 45°), the function can be recorded within a
time interval (L1=c, L2=c) on a position sensitive detector,
potentially within a single shot of an intense pulsed x-ray source.
A distribution of the spin-wave frequencies in the sample leads to
a fanning out (dephasing) of the photon polarization vectors (red
arrows) and thus a decreasing modulation amplitude with
increasing distance from the sample.
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AS ¼ ½im∥C− þm2⊥D sin 2Ωt�AV ¼∶ fðq;ΩÞAV: (11)

Thus, the intense, horizontally polarized direct beam that
was scattered by the sample without interaction with the
spin wave is completely blocked by the vertical linear
polarizer. The linearly polarized wave that is transmitted
by the vertical analyzer is modulated with a frequency
of 2Ω.
Inserting the above expression for fðq;ΩÞ given by

Eq. (11) into Eq. (1) and integrating over all frequencies of
energy loss and energy gain in the scattering process, we
obtain for the intensity observed behind the analyzer:

Iðq; tÞ ≈ IBSðqÞ þ IS

Z
∞

0

½Sðq;ΩÞ − Sðq;−ΩÞ� sin 2ΩtdΩ
(12)

with IB ¼ m2
∥jC−j2 and IS ¼ 2m∥m2⊥Re½iC−D��, where we

have used that jm2⊥Dj2 ≪ jm∥C−j2 and that
R
Sðq;ΩÞdΩ ¼

SðqÞ being the static structure factor for given q. The first
term in Eq. (12) is independent of t and thus contributes a
constant background to the measured intensity. The second
term contains information about the spin-wave dynamics. It
resembles the intermediate scattering function as it is
obtained in NSE spectroscopy [15]. This quantity can also
be obtained via time-domain interferometry based on
nuclear resonant scattering [26], but the resolution and
signal strength of that method are governed by the intrinsic
bandwidth of the nuclear resonant scattering method.
For symmetric functions Sðq;ΩÞ the integral in Eq. (12)

vanishes. This is typically the case in the limit ℏΩ ≪ kBT
under the condition of detailed balance at thermal equilib-
rium; i.e., Sðq;−ΩÞ ¼ expð−ℏΩ=kBTÞSðq;ΩÞ, where the
Stokes (Ω < 0) and anti-Stokes (Ω > 0) contributions in the
spectrum are almost equal, i.e., for small energy transfers
like in quasielastic scattering or at high temperatures. In
magnetic systems, however, the condition of detailed
balance is violated because it requires the system to possess
time-reversal invariance. This is not the case in the presence
of a magnetic field [27]: The equation of motion ∂m=∂t ¼
−γμ0m ×Heff of the magnetizationm in the effective field
Heff enforces only a right-handed precession. The time-
reverted state of a left-handed precession is not supported.
Therefore, one can expect a significant asymmetry in the
dynamical structure factor of magnetic systems, leading to a
nonzero value for the integral in Eq. (12). This asymmetry is
further enhanced with decreasing temperature. Moreover,
detailed balance is significantly violated for systems that are
strongly driven out of thermal equilibrium, as is the case,
e.g., for spin waves that are excited by a microwave field.
Since this scattering geometry with a vertical analyzer
enables polarization rejection ratios up to 10−10 in amultiple
reflectiongeometry [28–30], avery strong suppressionof the
nonresonant and nonorthogonal scattering can be achieved

so that even weak signals can be detected with good signal-
to-noise ratio. This technique appears to be very attractive
for studies at the L edges of the REs that are constituents of
materials with complex and unconventional magnetic prop-
erties and, due to their crystalline structure, should exhibit a
substantial XMLD. For these energies in the range of
6–9 keV, one finds Bragg reflections of Si or Ge with
Bragg angle close to 45° to ensure sufficiently high polari-
zation rejection (see the Supplemental Material [25]).
A case that is frequently encountered in experiments is a

spin wave with a wave vector q that lies on the dispersion
surface of the excitation with frequency Ωq and Lorentzian
line shape with half-width ΓðqÞ. We assume that the Stokes
or anti-Stokes asymmetry for that excitation can be ex-
pressed as Sðq;ΩÞ − Sðq;−ΩÞ ¼ I0ðΓ=2Þ2=½ðΩ −ΩqÞ2þ
ðΓ=2Þ2�Þ. By inserting this into Eq. (12), we obtain

Iðq; tÞ ¼ IBSðqÞ þ I0e−ΓðqÞt=ℏ sin 2Ωqt: (13)

The exponential results from the dephasing of the photon
polarization vectors with increasing travel distance from
the sample due to the distribution of spin-wave frequencies,
as illustrated in Fig. 2(a). Experimentally, the time t is
translated into the travel distance L of the photons after
the scattering process, i.e., t ¼ L=c, so that Iðq; tÞ ¼
Iðq; L=cÞ ¼∶ Iðq; LÞ can be measured via a position sensi-
tive analyzer behind the sample, consisting of a strongly
asymmetrically cut crystal with a Bragg angle equal or close
to 45° (the Brewster angle for hard x rays), as illustrated in
Fig. 2(b) (see also the Supplemental Material [25]). Thus,
one period T of the spin wave is mapped to a distance of
L ¼ πc=Ω. Assuming that the spatial point spread function
introduced by analyzer and detector has a width of Lmin ≈
100 μm and that about 10 sampling points are required to
resolve one modulation period, one finds that spin waves
up to a frequency of fmax ¼ Ωmax=2π ¼ c=ð20LminÞ ¼
150GHz can be detected. This covers a wide range of
magnetic dynamics that can be excited, e.g., via microwave
fields.
It should be noted that the formalism laid out in this

Letter is based on a classical description. This approach is
valid either when a large number of magnons is excited in
the system, e.g., via pumping by an external stimulus or
when kBT ≪ JS2 (with J being the exchange interaction
constant) but kBT ≫ ℏΩ. Since ℏΩ ∼ JS, this can be valid
only when S ≫ 1, i.e., for large spins. This applies for
many of the rare earth (RE) elements that exhibit large
magnetic moments close to that of a free ion. At the L edges
of RE compounds and transition metal oxides, one often
finds a relatively large XMLD contribution where this
spectroscopy relies on. Another very interesting realization
of the classical limit are collective spin-wave modes in
nanoparticles in which at sufficiently low temperatures only
the q ¼ 0 mode is populated where all spins precess in
unison [31]. These modes (that can also be excited by
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microwave fields [32]) lead to peculiar magnetic properties
of antiferromagnetic nanoparticles [33]. The scheme pro-
posed here offers the possibility to record Iðq; tÞ for a given
q in a single shot at x-ray free-electron lasers in combi-
nation with pump-probe schemes with unprecedented
energy resolution. This allows us to reveal magnetic
microstates as they are populated, for example, during
magnetic switching and reversal processes. If phase locked
to a periodic excitation process, similar studies can be done
in a stroboscopic fashion already at conventional synchro-
tron radiation sources. The combination with efficient
microfocusing and nanofocusing of high-brilliance x rays
allows us to uniquely access magnetic dynamics in low-
dimensional systems as they are relevant in the field of
spintronics and magnonics.

I acknowledge fruitful discussions with Jörg Evers,
Guido Meier, Lars Bocklage, and Liudmila Dzemiantsova.
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