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We study the phase diagram of an effective three-orbital model of the cuprates using variational
Monte Carlo calculations on asymptotically large lattices and exact diagonalization on a 24-site cluster.
States with ordered orbital current loops (LC), itinerant antiferromagnetism, d-wave superconductivity, and
the Fermi liquid are investigated using appropriate Slater determinants refined by Jastrow functions for on-
site and intersite correlations. We find an LC state stable in the thermodynamic limit for a range of
parameters compatible with the Fermi surface of a typical hole doped superconductor provided the transfer
integrals between the oxygen atoms have signs determined by the effects of indirect transfer through the
Cu-4s orbitals as suggested by Andersen. The results of the calculations are that the LC phase gives way
at lower dopings to an antiferromagnetism phase, and at larger dopings to superconductivity and Fermi
liquid phases.

DOI: 10.1103/PhysRevLett.112.117001 PACS numbers: 74.72.-h, 71.27.+a, 74.20.-z, 78.35.+c

Intense effort has been devoted to the phase diagram of
the high-Tc superconductors [1], especially the pseudogap
phase. Possibilities suggested for the latter include RVB
and/or preformed superconducting pairs [2,3], loops of
orbital current without broken translational symmetry (LC
phases [4,5]) and with broken translational symmetry [6],
and various other forms of lattice and magnetic order.
The LC phases are worth investigating in detail because
of neutron observations [7,8] in four different families of
cuprates of moments well compatible with the existence of
such phases. Their onset temperature is consistent with the
pseudogap temperature T� estimated from thermodynamic
and transport measurements. The fluctuations of such
phases [9,10] could provide a path to also explain the
properties of the strange metal phase [11] as well as the
d-wave superconductivity. However, several theoretical as
well as experimental questions remain to be understood in
relation to them.
In a quasi-1D system, it was found in weak-coupling

renormalization group calculations and numerical approaches
that longer-range interactions or a multiorbital nature of
the unit cell are needed to stabilize the orbital current
phases [12–14]. However, in one dimension these phases
have a spatial modulation becoming incommensurate upon
doping. Orbital current phases that do not break transla-
tional symmetry require a multiorbital model [15,16] that
includes the orbitals of the copper as well as the oxygen in
the unit cell. Three band Hubbard models were considered
early in the literature [17], but the stability of orbital
currents and loop current patterns was not investigated. In
two dimensions, a mean-field analysis [4] of such a model
showed the existence of the loop current phases when the

Cu-O nearest-neighbor repulsion is strong enough. However,
although the mean-field result is independently confirmed
[18], going beyond the mean field, either with exact
diagonalizations [19,20] or by variational Monte Carlo
(VMC) calculations [18] suggested an absence of currents
for large lattice sizes for the canonical model of cuprates
[15,21]. VMC calculations suggested, however, that the
main ingredient for the existence of such current was the
frustration in kinetic energy.
It is thus important to investigate more complete models

in which alternative paths for the kinetic energy can provide
such frustration. One such source of kinetic energy can be
provided by apical oxygens [18]. Another possible source
is additional kinetic energy terms [22] that have been
suggested in addition to the direct transfer between the
oxygen atoms. It was shown that the oxygen px;y orbital has
a much larger overlap with the unoccupied copper 4s
orbital than the direct O-O overlap, yielding on integration
over the 4s orbital a different set of effective parameters, in
which the effective O-O nearest-neighbor transfer integral
can have a sign opposite to that of the direct transfer (for a
derivation see the Supplemental Material [23]). We find and
will explain that this strongly affects the stability of the loop
current phase.
In this Letter we examine the role of such terms on the

stability of orbital currents by performing a VMC inves-
tigation of the revisited three band Hubbard model of
Ref. [22]. We use a Jastrow projected wave function that
allows an unbiased investigation of the relative stability of a
wide variety of phases including the loop current phase.
The key issues that we address in this work are (i) what is
the range of model Hamiltonian parameters which supports
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the various phases, and (ii) is this range of parameter
consistent with the Fermi surface of the typical hole doped
cuprate and with the properties of the Mott insulator-AFM
half-filled phase.
Our work builds on Ref. [18], only a short summary of

the method is therefore given. The variational wave
function considered here, and used as a variational ansatz
for the three band model Hamiltonian of the cuprates [23],
is built from the ground state Ψ0 of the Hofstadter-like
Hamiltonian (in hole notations):

HMF ¼
X

ði;jÞ
tijχijeiθijc

†
iσcjσ þ Δ

X

pσ

n̂pσ þ
X

i

hiSi; (1)

where χij, θij, and hi are variational parameters. The
variables χij and θij are allowed to be different on each
bond for a unit cell. θij ≠ 0 is a requirement for time-
reversal breaking through orbital currents; the geometry of
flux within the unit cell is given by closed loops of θij.
The local magnetic field hi allows antiferromagnetism
with the Néel-type staggered structure. This procedure is
used to determine the best approximation of the ground
state of the fully interacting Hamiltonian for the cuprates
(see Supplemental Material [23]).
Correlations and effects of quantum fluctuations of

various kinds on the ground state wave functions
(WFs) are included by multiplying Ψ0 by spin and
charge Jastrow factors, J ¼ exp ðPi;j¼1;Nv

c
ji−jjninjÞ

exp ðPi;j¼1;Nv
S
ji−jjS

z
iS

z
jÞ, where vcji−jj and vSji−jj are also

variational parameters. We note that i ¼ j in the charge
Jastrow is equivalent to the local Gutzwiller projection. We
considered Jastrow factors with ji − jj ≤ 3 Cu lattice
spacings and checked that they are negligible beyond this.
The minimization of the variational parameters is per-
formed using a stochastic minimization procedure [24,25]
in which the parameters of the uncorrelated part of the WF
and the Jastrow parameters are minimized at the same time.
In the standard representation of the cuprates within a

three band model, the curvature of the Fermi surface (for
hole doped copper oxides) is given by the sign of tpp.
However, for the extended representation of Ref. [22], the
two transfer integrals of the three band Hubbard model of
the cuprates (tpp and tpp0) control the curvature of the
Fermi surface. This is very similar to one-band t − t0 −U
theories, where the curvature of the Fermi surface is
controlled by the sign of the nearest- and next-nearest
hopping t and t0. We emphasize, however, that the transfer
integral t0pp and tpp do not have a direct equivalent in the
single-band picture. The hopping t, t0, and t00 of the single
band picture (see Ref. [26]) are obtained via nontrivial
relations to the original parameters (transfer integrals of the
original model and charge transfer energy).
The Fermi surface is in excellent agreement with the

ARPES of LSCO for tpp0 ¼ 1 and tpp ¼ −0.3 eV [see
Fig. 1(b)]. These values are also consistent with their

derivation [23] and the magnitude of the direct O-O transfer
of about 0.7 eV typically used. We also use tpp ¼ −0.5 eV
in the calculations in order to investigate the sensitivity of
the results to this parameter. The transfer integrals tpp and
tpp0 are illustrated in Fig. 2(a). Controlled calculations [27]
show that the charge transfer gap does not depend much on
tpp and tpp0. Thus, observable properties in the insulating
state are unaffected by the new choice.
We first discuss the low energy properties of a cluster of

8-CuO2 cells (the Hamiltonian parameters are given in the
Supplemental Material [23]) and compare the variational
results to the exact ground state energy in Table I. As a
reference, the energy of the Fermi-liquid (FL) state is
shown. We first allow the WFs which allows any time

(a) (b) (c)

tpp=-0.1 tpp=-0.3 tpp=-0.5

δ=0.22 δ=0.22 δ=0.22

tpp’=1 tpp’=1 tpp’=1

FIG. 1 (color online). Fermi surface of the uncorrelated
Hamiltonian obtained for Δ ¼ 2 eV and a) tpp ¼ −0.1 eV,
b) tpp ¼ −0.3 eV, c) tpp ¼ −0.5 eV for δ ¼ 22% hole doping.
The Fermi surface curvature is weakly dependent on the charge
transfer energy Δ, but evolves significantly with the oxygen-
oxygen transfer integral tpp. The Fermi surface of LSCO extracted
from ARPES data is shown for comparison [28] (dotted lines).
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FIG. 2 (color online). (a) Signs of the charge transfer integrals
in hole notations and definition of the model Hamiltonian
parameters. The hopping tpp (plain lines) connects the nearest
neighbor O-p orbitals, the direct exchange tdp (bold lines)
connect the d and p orbitals, and tpp0 connects next nearest
neighbor p orbitals (dashed lines), ϵd (ϵp) are respectively the
energy levels of the d and p orbitals. The signs of the transfer
integrals are given on each link. (b) Pattern of current obtained
from the variational w.f. θ2=J=LS on a 8-copper lattice with 10
holes and Sz ¼ 0 (see Table I). The current flows between orbitals
lying on nearest neighbor sites (black arrow) and between along
the px − px and py − py oxygens orbitals (blue arrows). The
current pattern has two circulating current loops (shaded areas)
with opposite chiralities.
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reversal symmetry breaking pattern (the complex phases
are optimized on each of the link within a Cu-O2 unit cell).
Remarkably, we find that the orbital currents are stabilized
and yield an effective energy optimization (see Table I, WF
θ2). The symmetry of the orbital current pattern (see Fig. 2)
consists of two orbital current loops, with opposite chir-
alities, which is consistent with the theoretical proposal for
the pseudogap phase of the cuprates [4].
The orbital current WF optimized with long-range Jastrow

factors (θ2=J) and with a so-called Lanczos step [29]
(θ2=J=LS) capture 95% of the ground state energy (ED).
This suggests that the orbital current WF is a good candidate
to describe the low energy physics of the three-b and
Hubbard model. Remarkably, we also find that the degen-
erate exact eigenstates in the k ¼ ð0; πÞ and k ¼ ðπ; 0Þ are
only 0.0009 eV (≈10 K) apart from the ground state. The
presence of very low energy states with finite momentum
hint towards a possible orbital current instability [30].
Despite the good energy of our WFs, we notice that the

obtained orbital current pattern for small lattices satisfies
conservation of the current at each vertex to only within
10% or less (but with overall current 0), as shown in Fig. 2;
this stems from the fact that the WF is not an eigenstate of
the three band Hamiltonian, as discussed in Ref. [18].
In order to understand the physics of the orbital currents,

we compare the change in the different contributions to the
variational energies. As expected we find that the orbital
current WF (θ2), without any further optimization such
as the Jastrow or the Lanczos step, reduces the double
occupation, and reduces the local Coulomb energy from
EU ¼ 0.42 eV (FL) down to EU ¼ 0.31 eV (θ2), and also
reduces the nearest-neighbor Coulomb repulsion from
EV ¼ 0.54 eV (FL) down to EV ¼ 0.22 eV (θ2). This large
potential energy optimization due to orbital currents is
accompanied by increased kinetic energy; in particular, the
d-p kinetic energy is worsened from Ed−p ¼ −3.63 down
to Ed−p ¼ −0.76 eV, which is in turn largely compensated
by a reduction of O-O kinetic energy from Ep−p ¼ 0.97

down to Ep−p ¼ −1.77 eV. Note that at low and moderate
hole doping for tpp < 0, the signs of the oxygen-oxygen
overlaps in the Fermi liquid wave function are such as to
give a positive contribution to the kinetic energy due to the
tpp term in the Hamiltonian. The orbital currents provide an
efficient way to optimize both these and the interaction
energy terms. This optimization is ineffective both at very
low doping or for very largeΔ, where the tpp kinetic term is
negligible due to the low oxygen hole densities.
The importance of the sign of tpp is that for chemical

potential on the antibonding band of a three-orbital model,
as in the cuprates, the orbital current phase is favored if
the product of the signs of the transfer integrals around the
O-Cu-O triangles is positive. This is already suggested by
the fact that in such a triangle in isolation, the two
degenerate current carrying (complex) states lie in energy
above the one real state even for the noninteracting model.
Let us now consider the results for large clusters. We

have performed calculations on lattices with 36, 64, and
100 unit cell sites, i.e., N ¼ 108, N ¼ 192, and N ¼ 300
lattice sites. In order to avoid spurious finite size effects
induced by the artificial degeneracy of the variational wave
functions, we considered rotated geometries, with T1 ¼
ðL; 0Þ and T2 ¼ ð1; LÞ lattice vectors, where L ¼ 6, 8, 10,
and we used periodic boundary conditions in all cases [31].
In Figs. 3(a) and 3(b), we show the condensation energy

obtained for the orbital current θ2=J WFs, as a function of
the charge transfer energy Δ at fixed doping δ ≈ 12%
together with that for the d-wave superconducting phase.
The superconducting wave function [see Figs. 3(a) and
3(b)] is obtained by replacing the Slater determinant with a
d-wave BCS wave function and keeping the Jastrow
factors. We find that the loop current instability is present
at small and moderate charge transfer energy Δ < 1 eV.
For large Δ the three band Hamiltonian reduces to an
effective one-orbital Hubbard or t-J model, and no orbital
currents are found. We find that at δ ¼ 12% the d-wave
BCS state is stabilized for Δ > 1 eV [Figs. 3(a) and 3(b)].

TABLE I. Variational energies E and variance σ2 of the different WFs on an 8-cell CuO2 lattice with 10 holes
(δ ¼ 25%) and Sz ¼ 0 together with the exact ground state energies ED for total momentum k ¼ ð0; 0Þ and
k ¼ ð0; πÞ; ðπ; 0ÞÞ. The variational Ansatz are (i) the Fermi sea projected with a local Gutzwiller projection or
Fermi-liquid (FL), (ii) the mean-field orbital current WFs in θ2 pattern projected with a local Gutzwiller projection,
(iii) θ2 optimized with the Jastrow factors (θ2=J), iv) θ2=J improved by applying additionally one Lanczos step
(θ2=J=LS). All shown results are for Δ ¼ 0 and tpp ¼ −0.5 eV. We also show the energy (E192) and variance (σ2192)
obtained on a 192 site lattice for comparison (with same δ). On the large lattice, both the energy and variance are
systematically improved by the WF optimizations.

WFs E [eV] σ2½eV2� Jdp½eV� E192½eV� σ2192½eV2�
FL −1.700ð1Þ 0.064(1) 0 −1.604ð1Þ 0.0129(1)
θ2 −1.996ð1Þ 0.0507(1) 0.29(1) −1.657ð1Þ 0.0102(1)
θ2=J −2.023ð1Þ 0.0409(2) 0.22(2) −1.848ð1Þ 0.0028(1)
θ2=J=LS −2.077ð1Þ 0.0498(1) 0.22(1) −1.863ð1Þ 0.0019(1)
ED (k ¼ ð0; πÞ) −2.1954ð0Þ 0 0
ED (k ¼ ð0; 0Þ) −2.1965ð0Þ 0 0
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At zero doping we find that the Néel magnetic long-range
order is stabilized for Δ > 1 eV, and is stable to increasing
doping when the charge transfer energy is increased, in
agreement with early variational Monte Carlo calculations
done for the three band Hubbard model [32].
We summarize in Fig. 3(c) the phase diagram of the

Fermi-liquid state and the states with the largest conden-
sation energy for a given Δ and δ. The antiferromagnetic
phase is obtained by removing the degeneracy of up and
down spins in the Slater determinant corresponding to a
commensurate (π, π) phase and with the Jastrow factors.
For tpp ¼ −0.3 we recover the generic long-range

ordered phases of the cuprates [Fig. 3(c)]. In particular,
we obtain a stable AF state at low doping or large charge
transfer energies (upper left part of the phase diagram). The
loop current phase is obtained for moderate charge transfer
energies and vanishes at larger charge transfer energies
(stable in the lower part of the phase diagram). The
superconducting instability is obtained at the vicinity of
both the AF and LC states. We obtain, hence, a qualitative
agreement with the phase diagram of the cuprates; however,
whether the instabilities coexist and whether further
improvements might shift the boundaries of the instabilities
remain to be seen in future work. Further tweaking of the
parameters in a small range (for example reducing tpp by
< 10%) about the chosen parameters is also likely to

reproduce the small variations of the ground states of
the different cuprates compounds with doping.
We note that to compare with the cuprates, and to connect

the charge transfer energy used in our calculations
(Δ ¼ ϵp − ϵd) with the physical charge transfer energy of
the compounds (Δ0 ¼ ϵ0p − ϵ0d), we need to correct the
charge transfer energy with the double counting correction.
Indeed, Δ0 estimated from density functional theory already
contains at the mean field level the effect of the correlation.
The relation is Δ ¼ Δ0 − EDC, and EDC ¼ Udðnd − 0.5Þ,
where Ud is the Coulomb repulsion and nd the hole density
on Cu. With a typical value of nd ≈ 0.85 [33], we obtain
EDC ≈ 2.8 eV. This is consistent with the observation of
loop currents in LSCO for instance, whereΔ0 is estimated to
be around 3–4 eV [34], which corresponds toΔ ≈ 0–1 eV in
our calculations.
Finally, we tested the validity of our results by extending

the calculations to other values of the nearest neighbor
Coulomb repulsion Vdp (see Supplemental Material [23]).
We found that the orbital currents are stabilized for realistic
values of the Coulomb repulsions Vdp < 3 eV.
To summarize, we have carried out a detailed study of

several broken symmetry phases of an effective three-
orbital model for the cuprates, with the special new feature
that it includes Cu-4s mediated oxygen-oxygen transfer, as
suggested by Andersen [22]. This indirect O-O hybridiza-
tion of Andersen leads to an ambiguity regarding the sign
of the tpp transfer integral. We have made a choice
consistent with the direct tpp and in agreement with the
Fermi surface of a typical hole doped superconductor. We
show that this new effective model for cuprates yields a
stable LC phase at finite doping, consistent with the phase
diagram suggested earlier and discovered by neutron
scattering. We extended the calculations to large clusters
by VMC calculations, and validate our theory by deducing
a map of the amplitude of the orbital currents as a function
of the doping and the charge transfer energy. The typical
phases (spin density wave, loop current, superconducting
and Fermi liquid) generically observed in the cuprates are
also present in our calculations.
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