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We study the midinfrared plasmonic response in Bernal-stacked bilayer graphene. Unlike its monolayer
counterpart, bilayer graphene accommodates optically active phonon modes and a resonant interband
transition at infrared frequencies. They strongly modify the plasmonic properties of bilayer graphene,
leading to Fano-type resonances, giant plasmonic enhancement of infrared phonon absorption, a narrow
window of optical transparency, and a new plasmonic mode at higher energy than that of the classical

plasmon.
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Plasmonics [1] is an important subfield of photonics
that deals with the excitation, manipulation, and utilization
of plasmons-polaritons [2]. It is a key element of nano-
photonics [3], metamaterials with novel electromagnetic
phenomena [4,5], and also has potential applications
in biosensing [6]. Recently, graphene has emerged as a
promising platform for plasmonics [7,8]. It has many
desirable properties such as gate tunability, extreme light
confinement, long plasmon lifetime, and plasmonic reso-
nances in the terahertz to midinfrared (IR) regime [9-14].
Spatially resolved propagating plasmons have been
observed with a scanning near-field optical microscope
[15,16]. Tunable plasmon resonances in the terahertz [17]
to IR [18,19] region have been observed in graphene
micro- and nanoribbons, and the relative damping path-
ways have also been studied [19]. Identified applications
for graphene plasmonics range from notch filters [18],
polarizers, and modulators [17-19] to beam reflect arrays
[20], biosensing [21], and IR photodetectors [22] via
bolometric effect [23].

In this Letter, we discuss why Bernal A B-stacked bilayer
graphene is important and interesting in its own right as a
plasmonic material. Apart from a few theoretical studies of
plasmons in bilayer graphene [24-29], there are still no
experimental studies of bilayer graphene plasmonics. The
first indication that the plasmonic response in bilayer
graphene might be very different than that of the monolayer
is its two prominent IR structures in its optical conductivity.
IR optical measurements of bilayer graphene reveal a
phonon peak at Aw ~ 0.2 eV, with a strong dependence
of peak intensity and Fano-type line shape on the applied
gate voltage [30,31]. The interlayer coupling in bilayer
graphene also results in two nested bands, which present a
set of doping-dependent IR features [32—-34]. This inter-
band transition between the two nested bands produced a
conductivity peak at 7w =~ 0.4 eV in optical IR measure-
ments [35-37]. The impact of these IR structures on the
bilayer plasmonic response has not been studied. We found
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several novel plasmonic effects in bilayer graphene: (i) giant
plasmonic enhancement of infrared phonon absorption,
(ii) an extremely narrow optical transparency window, and
(iii) a new plasmonic mode at higher energy than that of the
classical plasmon.

Bilayer graphene arranged in the Bernal AB stacking
order is considered, with basis atoms A;, B; and A,, B, in
the top and bottom layers, respectively. The intralayer
coupling is yy = 3 eV, and the interlayer coupling between
A, and By is y; = 0.39 eV, an average of values reported
in optical IR and photoemission measurements [35-39].
We work w1th1n the 4 x 4 atomlc pz orbitals basis, i.e.,
ajg bIk, agk, b2k, where a and b] are creation operators
for the ith layer on the A /B sublattlces Within this
basis, the Hamiltonian near the K point can be written
as My=vm l®oc_ +vm I@oc,+(A)2)0, ® I+
r1/26, ® 6, +0, ® oy}, where o; and I are the Pauli
and identity matrices, respectively. We defined o, =
1(o, +io,) and n. = h(k, * ik,). Here, v is the in-plane
velocity [40] and A is the electrostatic potential difference
between the two layers. Expressions for noninteracting
ground-state electronic bands &£,(k) (n = 1 — 4, see inset
of Fig. 1) and wave functions ®,(k) are obtained by
diagonalizing H,; see the Supplemental Material [41]

We consider coupling of long wavelength longitudinal or
transverse optical (LO/TO) phonons near the I" point with
the graphene plasmons. Relative displacement of the two
sublattice in the top layer (7)) is given by

— L 5 pT ipr
wr(n) = 5 Agwp +blp)e(p)e? (1)

where A is the area of the unit cell, p,, is the mass density
of graphene, p = (p,. p,) is the phonon wave vector, A
denotes the LO/TO modes where b} p; are its creation
operators, e,(p) are the polarlzanon vectors given by
eo(p) = i(cos@,sing), and erg(p) = i(—sing, cos @)
where ¢ = tan™'(p,/p,). Because of the two graphene
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FIG. 1 (color online). Real part of bulk bilayer graphene
conductivity (solid line) computed at 7 = 300 K at chemical
potential of 4 = 0.3 eV, constant damping of 7 = 10 meV, zero
gap (i.e., A=0 eV), and ¢ =0. This is compared with
the case where y; =0 eV (dashed line); oy is the universal
conductivity of e?/2#.

layers, there are two possible vibrational modes, i.e.,
symmetric [ug(r) = uy(r)] and antisymmetric [ug(r) =
—uy(r)], where subscript B denotes the bottom layer.
Hence, the electron-phonon coupling at the K valley for
bilayer graphene is given by [42,43]

2ph
H, _op(r) = —ﬂ%ai x u(r) )

a
with a ~ 1.4 A as the C-C distance, af =Ioj, 67 = 0.0},
and where f = —01Iny,/da is a dimensionless parameter

related to the deformation potential. Without loss of
generality, we take the electric field polarization to be
along y and ¢ = 0. Since only the lattice vibration along y
can couple to light, we consider only the TO lattice mode.
As a result, we can write the electron-phonon interaction
for the v mode in the following form

H, \/_Zakﬂ) akeip‘r(lgp + I;;) 3)

where v = S, A denotes the symmetric and antisymmetric

modes, with Vg(p — 0) =iglo, and V,(p - 0) =
igo,o,, where
h h o
_ Phog ~03 eVAT, )

since f~2 and hw,, = 0.2 eV [42].
The plasmonic response of bilayer graphene can be
obtained from its dielectric function given by

2

q
erYPa(q’ w) -0 Hﬂ/}(‘]! ) — U ;5Hj,j(q7 w)’ (5)
at arbitrary wave vector ¢ and frequency w; v, = €>/2qe,
is the two-dimensional (2D) Coulomb interaction, and x is
the effective dielectric constant of the environment. Here,

I ,(g.w) is the noninteracting part (i.e., the pair bubble
diagram) of the charge-charge correlation function given
by [11,12]

HO( —

gSgL Z/dk

% nF(én( ))_nF(fn’(k—i_q))
é:n(k)_gn’(k_l_q) +hw+lh/re

|an’(k’q)|2’
(6)

where nj is the Fermi-Dirac distribution function, g, and
g, are the spin or valley degeneracies, F,,(k,q) =
(®,(k)|®,y(k +q)) is the band overlap, and 7, is the
electron lifetime, where we assumed a typical experimental
value of n = /7, ~ 10 meV [19].

The effect of electron-phonon interaction is included
within 6I1; ;(¢, ), where subscript j denotes the current
operator. Here, we employ a model for 6I1; ;(¢, @) that is
consistent with the various electron-phonon selection rules
for the symmetric or antisymmetric modes and Fano effect
observed in optical spectroscopy experiments for bilayer
graphene. The detailed implementation follows a formal-
ism known as the charged-phonon theory [44—46],

5Hj,j(q’ er u(qv 1)1) )F /T, (qv )’ (7)
where
jy(q a) gSgL Z/
% nF(fn( ))_nF(gn(k—i_q))
fn(k)—é,,/(kJrq)+hw+ih/re[‘7]"”’[v”]"’"’
®)
where  [7],,0 = (©,(k)|7] @y (k +q)) and [V,],,, =

(®,(kK)|V,|®,(k +q)) with v =A, S and the current
operator defined as J = vplo, with the direction of the
electric field. D is the phonon Green’s function,

- Fv*,v’ (w) ©)

where Dy = 2w,,/h((w + i/7,,)* — w3,) is the free pho-
non Green’s function and z,,, describes the phonon lifetime.
In this calculation, we assumed 7., ~ 1 ps [47].

Figure 1 shows the optical conductivity of bilayer

graphene calculated from the relation [45]

(D7 (@), = 6,0[D5' ()]

v’

2 2

e
o(q, )—1 p HO (q,a))—l—lgénj.j(q,a)). (10)
—_—
& oo

The calculation assumes 7" = 300 K, chemical potential of
1 =03¢eV,and A =0 eV; & is the noninteracting optical
conductivity, which accounts for a Drude peak at @ =0
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and a universal conductivity of e?/2#A. The peak conduc-
tivity at iw = y is due to interband transitions between two
perfectly nested bands, e.g., &5 and &4, separated in energy by
v; see inset. These conductivity peaks at @ = 0 and 2w =y
are phenomenologically broadened by w — w + i/z, in the
model; o accounts for the electronic interaction with the IR
phonons modes (v = A, S) and agrees well with experi-
mentally measured optical spectra of bilayer graphene [45].
In our zero gap case, only the A mode (asymmetric mode)
is IR active [45]; see the inset of Fig. 1. This mode is
responsible for the sharp resonance feature at @ = @,y,.

Longitudinal collective plasmonic dispersion is obtained
by looking for the zeros in the real part of the dynamical
dielectric function, i.e., Re[e} (g, ®)] = 0. For bilayer
graphene, there are three solutions [24,48], a “classical”
plasmon with /g behavior, an acoustic plasmon with o ¢
behavior, and a high-energy y plasmon residing near the
interband resonance y. Only the former has been found to
be fully coherent, whose dispersion in the long wavelength
limit can be shown to follow

1 [qetrg —~ni(u)
wpl(‘]) - % 4 D
€K = (1)

(11

where g = 4 is the degeneracy factor and n;(u) and D;(u)
are the carrier density and density of states of the jth band,
respectively. On the other hand, the other two solutions are
overdamped. The acoustic plasmon lies in the intraband
continuum and is always overdamped with insignificant
spectral weight [24,48]. Under typical conditions, the high-
energy y plasmon is also overdamped, lying in the interband
continuum (i.e., &;,&, — &3, &, transitions) when 2u <y
and the low-energy interband continuum (i.e., &, — &, or
&; — &, transitions) when 2 > y. We show later that, under
certain conditions, this mode can become fully coherent.

Electron loss function, defined as the imaginary part
of the inverse dielectric function, i.e., L(gq,w)=
[€7"(q, w)]!, is a quantity that can be probed in various
spectroscopy experiments [19,49,50]. Figure 2(a) shows
the calculated L(q, ®) assuming typical experimental con-
ditions: y = 0.3 eV, A=0eV, T =300 K, x = 2.5, and
n =10 meV. The single particle continuums are also
indicated: (1) intraband, (2) electron-hole interband, and
(3) low-energy interband. The ,/q plasmon lies above the
intraband continuum and compares well with the long
wavelength dispersion @,,(¢g), while the y plasmon is
significantly broadened. The most important result is the
appearance of distinctively sharp structure near @ ~ @,
not seen in monolayer graphene [11,12].

Figure 2(b) plots the loss spectra at different momenta g.
We observe an enhancement in the IR activity of the
phonon mode as the plasmon resonance approaches .
The transfer of plasmonic spectral weight to the IR phonon
mode, as reflected by an increase in both intensity
and linewidth, is enhanced with decreasing detuning.
Renormalized by many-body interactions, this “dressed”
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FIG. 2 (color online).  (a) RPA electron loss function L (g, @) for
bilayer graphene computed at 7 = 300 K at chemical potential of
u = 0.3 eV, constant damping of # = 10 meV, zero energy gap
(i.e., A = 0 eV), and a background dielectric constant of k = 2.5.
Green lines are boundaries for the Landau damped regions.
(b) Plots of spectra at different plasmon momenta q.

phonon exhibits pronounced IR activity and is also accom-
panied by Fano asymmetric spectral line shapes. The Fano
feature is acquired through interference between the discrete
phonon mode and the “leaky” plasmonic mode; the elec-
tronic lifetime is significantly shorter than that of
the phonon, broadening the former into a quasicontinuum.
The loss spectra show the evolution of the plasmonic and
phonon resonances as they approach each other. They evolve
from separate resonances at small g to a Fano line shape and
eventually an induced narrow transparency at zero detuning.
This very narrow transparent window emerged within the
broadly opaque plasmonic absorption, a phenomenon
analogous to the electromagnetically induced transparency
[5], and should also be accompanied by novel electromag-
netic effects such as slow light [51]. On the contrary,
plasmon coupling with substrate surface optical phonons
typically leads to well-separated resonances instead [19,29].

Transmission spectroscopy studies have proven to be very
effective in probing the plasmonic properties of graphene,
where finite plasmon momentum g can be sampled by simply
patterning graphene into nanostructures [17,18]. Graphene
nanostructures with dimensions down to 100 nm would allow
us to access these predicted mid-IR plasmonic features under
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experimentally accessible doping conditions [18]. The
enhancement of IR phonon activity with decreased detuning
between the phonon and plasmon resonance might lead to
interesting applications. Indeed, such plasmon-enhanced IR
absorption has permitted an emerging field of spectroscopy
by noble metals of surfaces and electrochemical systems [52].
Tunable plasmonic resonance in graphene nanostructured
surfaces might allow for the detection of molecules through
enhancement of its IR vibrational modes.

Previously, we have seen that the y-plasmon mode is
overdamped. In the limit of small momenta, it has the
following dispersion [48]

1 ge* U
- log (14+22)]. 12
w,(q) h{r+8”€(ﬂ< 0g< + yﬂ (12)

If the y plasmon gains sufficient oscillator strength, e.g., by
modifying its doping (1) or dielectric environment (| x), it
can reside outside the low-energy interband continuum.
This is shown in Fig. 3(a) (dashed line), calculated using
Eq. (12) assuming y = 0.6 eV and k = 1. The electron loss
function in Fig. 3(a) indicates several interesting features of
this high-energy y-plasmon mode. First, its dispersion
departs from the simple @, —y « g relation, acquiring
an increasingly ¢* behavior with g. We find that the
modified dispersion can be described within a model that
accounts for the effective coupling between the classical
and y plasmon as follows:

2 2
a)pl a

@ a3
)
o' 0’ —w;+a

Eoff XK
where a is an effective coupling between the two modes.
Using the long-wavelength expressions for these modes,
i.e., Egs. (11) and (12) (dashed white lines) and a coupling
energy a = 85 meV, the coupled mode solutions (solid
white lines) obtained by solving for e,y = 0 agree well with
the dispersions observed in the loss function. Second, we
observed prominent spectral weight transfer from the
conventional 2D plasmon to the y-plasmon mode.

Figure 3(b) plots the calculated L(g, ®) and L(q, ®)/w
spectra at typical values of ¢ =2-10x 10’ m~'. The
integrated loss function [§°L(q,w)dw is related to
the Coulomb energy stored in the electron fluid [53]. On
the other hand, through the Kramers-Kronig relations, one
can obtain the sum rule [°L(q,»)/wdw =—1/z [54],
with conserved spectral weight at different g. We see that
the y plasmon acquires a spectral weight an order of
magnitude larger than the conventional plasmon as the
latter enters into the Landau damped region. Hence, it
should be experimentally observable. The possibility of an
“optical”’-like high-energy plasmonic mode, previously
presumed to be overdamped with little spectral weight
[48], might open up applications in the higher mid-IR
spectral range. With high enough doping, e.g., with
electrolyte gating, this mode can gain enough oscillator
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FIG. 3 (color online).  (a) RPA electron loss function L (g, ) for
bilayer graphene computed at 7 = 300 K at chemical potential of
1 = 0.6 eV, constant damping of # = 10 meV, zero energy gap
(i.e., A =0 eV), and a background dielectric constant of x = 1.
(b) Plots of spectra L (solid lines) and L/ (dashed lines) at
different plasmon momenta q.

strength and be pushed out of the Landau damped region, to
become a coherent plasmonic mode.

In summary, we have shown that bilayer graphene as a
new plasmonic material is important and interesting in its
own right. The above-mentioned new mid-IR plasmonic
effects can also be generalized to more complex graphene
stacks [55], for example, ABC or ABA trilayers. These new
plasmonic resonant features can also potentially lead to
interesting applications such as engineered metamaterials
with novel electromagnetic effects [56], resonant heat
transfer processes [57], and many others [5].
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