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The heavy fermion metal β-YbAlB4 exhibits a bulk room temperature conduction electron spin
resonance (ESR) signal which evolves into an Ising-anisotropic f-electron signal exhibiting hyperfine
features at low temperatures. We develop a theory for this phenomenon based on the development of
resonant scattering off a periodic array of Kondo centers. We show that the hyperfine structure arises from
the scattering off the Yb atoms with nonzero nuclear spin, while the constancy of the ESR intensity is a
consequence of the presence of crystal electric field excitations of the order of the hybridization strength.
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Heavy fermion systems have been probed by a variety of
experimental techniques and have provided great insights
into the understanding of strong correlated systems. These
systems are formed by a lattice of localized moments
immersed in a conduction sea [1,2]. An important class of
heavy fermion metals exhibits the phenomenon of quantum
criticality [3,4], and the recent discovery of an intrinsically
quantum critical heavy fermion metal, β-YbAlB4 [5–8],
with an unusual electron spin resonance (ESR) signal [9]
has attracted great interest.
Traditionally, ESR is used as a probe of isolated magnetic

ions in dilute rare-earth systems [10]. With the discovery of
sharp bulk ESR absorption lines in certain heavy fermion
materials, this experimental probe has emerged as a fascinat-
ing new tool to probe the low energy paramagnetic spin
fluctuations in these materials. Normally, rare-earth ions
display an ESR signal when they are weakly coupled to
the surrounding conduction sea, acting as dilute “probe
atoms.” A bulk f-electron ESR signal in heavy fermion
metals is unexpected, for here, the lattice of localmoments are
strongly coupled to the conduction electron environment.
Naively, one expects the ESR resonance to be washed out by
the Kondo effect, yet surprisingly, sharp ESR lines have been
seen to develop at low temperatures in a variety of heavy
electron materials [11,12].
The case of β-YbAlB4, where the ESR signal evolves

from a room temperature conduction electron signal into an
Ising-anisotropic f-electron signal at low temperatures, is
particularly striking. As the temperature is lowered, the
g factor changes from an isotropic g ≈ 2 to an anisotropic
g factor characteristic of the magnetic Yb ions. Moreover,
the signal develops hyperfine satellites characteristic of
localized magnetic moments, yet the intensity of the signal
remains constant, a signature of Pauli paramagnetism [9].
These results challenge our current understanding and
motivate the development of a theory of spin resonance
in the Anderson lattice.
Here, we formulate a phenomenological theory for the

ESR of an Anderson lattice containing anisotropic

magnetic moments. Our theory builds on earlier works
[13–15], focusing on the interplay between the lattice
Kondo effect and the paramagnetic spin fluctuations while
considering the effects of spin-orbit coupling, crystal
electric field (CEF) and hyperfine coupling. We show that
the key features of the observed ESR signal in β-YbAlB4,
including the shift in the g factor and the development of
anisotropy, can be understood as a result of the develop-
ment of a coherent many-body hybridization between the
conduction electrons and the localized f states. We are able
to account for the emergence of hyperfine structure as a
consequence of the static Weiss field created by the nuclei
of the odd-spin isotopes of Yb. Moreover, using a spectral
weight analysis, we show that the constancy of the intensity
can be understood as a consequence of the intermediate
value of the CEF excitations, comparable to the hybridi-
zation strength.
ESR measurements probe the low frequency transverse

magnetization fluctuations in the presence of a static
magnetic field. The power absorbed from a transverse ac
electromagnetic field at fixed frequency ν0 as a function of
the static external field H, is given by

Pðν0; HÞ ∝ χ00þ−ðν0; HÞ; (1)

where

χþ−ðν; HÞ ¼ −i
Z

∞

0

dteiνth½MþðtÞ;M−ð0Þ�iH (2)

is the dynamical transverse magnetic susceptibility and
M� ¼ Mx � iMy are the raising and lowering components
of the magnetization density.
In β-YbAlB4, the Yb ions are sandwiched between two

heptagonal rings of boron atoms [5], occupying a magnetic
4f13 state with total angular momentum J ¼ 7=2. Crystal
fields with sevenfold symmetry conserve Jz, splitting the
J ¼ 7=2 Yb multiplet into four Kramers doublets, each
with definite jmJj. Based on the maximal degree of overlap,
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the Curie constant and the anisotropy of the magnetic
susceptibility of β-YbAlB4, the low lying Yb doublet
appears to be jmJ ¼ �5=2i, with first excited state jmJ ¼
�3=2i [16,17].
We start with an infinite-U Anderson lattice model,

based on the overlap of the boron orbitals with the
j7=2; α ¼ �5=2i f-electron ground state doublet and the
first excited CEF level, the pure j7=2; β ¼ �3=2i state,
given by H ¼ Hc þHf þHfc −M⋅H, where

Hc ¼
X
k;σ

ϵkc
†
kσckσ; Hf ¼

X
j;γ

ϵfγf
†
γðjÞfγðjÞ;

Hfc ¼
X
jkσγ

½e−ikRjVkσγc
†
kσX0γðjÞ þ H:c:�; (3)

describe the conduction and f bands, and the hybridization
between them; M ¼ P

jμB½gcScðjÞ þ gfJfðjÞ� is the total
magnetization, where gc ¼ 2 and gf ¼ 8=7 are the
conduction and f-electron Landé g factors and Jf is the
total angular momentum operator of the f states.
The operator c†kσ creates a conduction hole in the boron
band with dispersion ϵk. The composite X0γ ¼ ðb†fγÞ≡
j4f14ih4f13; γj is the Hubbard operator between the
j4f13; γi≡ f†γ j0i, “hole” states of the Yb3þ ion and the
filled shell Yb2þ state j4f14i≡ b†j0i, written using a slave
boson representation. The azimuthal quantum number
γ ≡mJ has values γ ∈ ½�5=2;�3=2� corresponding to
the ground state doublet with energy ϵf�5=2 ¼ ϵf and the
next CEF level, with energy ϵf�3=2 ¼ ϵf þ ΔX.
We employ a mean-field approximation X0γðjÞ → rfγðjÞ,

where the mean-field amplitude of the slave boson, r ¼
jhbjij describes the emergence of the Abrikosov-Suhl res-
onance at each site, resulting from Kondo screening. In the
mean field theory, H → Hc þ ~Hf þ ~Hfc, where

~Hf ¼
X
kγ

~εfγf
†
kγfkγ þ λðr2 − 1Þ; (4)

~Hfc ¼
X
kσγ

½c†kσ ~Vkσγfkγ þ H:c:�; (5)

with ~Vkσγ ¼ Vkσγr and ~ϵfγ ¼ ϵfγ þ λ the renormalized
quasiparticle hybridization and f-level energy, and λ the
Lagrange multiplier that enforces the average constraint
hnfi þ hb†bi ¼ 1. The temperature dependence of the
many body amplitude rðTÞ and λðTÞ determines the
evolution of the ESR signal.
In the ground state, the ratio ~V2=W ∼ TK determines the

Kondo temperature TK , where ~V is the characteristic size of
the hybridization and W is the conduction electron band-
width. The degree of magnetic anisotropy in the Kondo
lattice is set by the size of the crystal field splitting ΔX. In a
Kondo impurity, one can project out the crystal field excited
states, provided ΔX=TK ≳ 1, and crystal symmetry pre-
vents any admixture of the projected states with the

Abrikosov-Suhl resonance. However, in a Kondo lattice,
the nonconservation of crystal symmetry becomes impor-
tant once ΔX ≳ ~V ∼

ffiffiffiffiffiffiffiffiffiffiffi
TKW

p
, a situation that can occur

even though ΔX ≫ TK . In this situation, the hybridization
will admix the mobile f quasiparticles with the higher
crystal field states. We shall show that this produces
significant modification to the magnetization operator of
the quasiparticles. Thus, there are three regimes of interest:
(1) Ising limit ΔX= ~V ≫ 1, ΔX=TK ≫ 1; (2) intermediate
anisotropy ΔX= ~V ≳ 1, ΔX=TK ≫ 1; and (3) weak
anisotropy ΔX= ~V < 1.
Although β-YbAlB4 almost certainly lies in the second

category, the Ising limit captures most of the physics. In this
limit, the �3=2 states are projected out, leading to a two-
band model in which the matrix elements of the transverse
f magnetization J�f are absent. The ESR signal, then, is
determined by the spin dynamics of the conduction
electrons in the presence of the lattice Kondo effect, given
by Pðν; HÞ ∝ χ00cþ−ðν; HÞ. As a first step, we examine this
limit, using a simplified model in which the hybridization is
spin diagonal and its complex momentum dependence is
ignored, replacing ~Vkσγ → ~V 1

¯
. In mean-field theory,

χcþ−ðiνnÞ ¼ −μ2BT
X
m

Gc↓ðk; i ~ωm þ iνnÞGc↑ðk; i ~ωmÞ;

(6)

where GcσðzÞ ¼ ½z − ϵkσ − ΣcσðzÞ�−1 is the conduction
electron propagator and ΣcσðzÞ ¼ V2r2=ðz − ~ϵfσÞ is the
self-energy generated by resonant scattering off f states.
Here, vertex corrections have been neglected and the spin
relaxation has been included as a white noise Weiss field
acting on conduction and f electrons, shifting the
Matsubara frequency by the spin-relaxation rate,
~ωm ¼ ωm þ iðΓ=2ÞsgnðωmÞ. Carrying out the momentum
sum as an energy integral, and expanding the self-energy to
linear order in frequency, at low temperatures we obtain

χcþ−ðν − iδ; HÞ ¼ μ2BZcNcð0Þ
�

g�μBH þ iΓ
g�μBH þ iΓ − ν

�
: (7)

Here, Ncð0Þ is the density of states of the conduction
electrons, Zc ¼ ð1 − ∂Σc=∂ωÞ−1 ¼ ð1þ V2r2=~ϵ2fÞ−1 is the
conduction electron quasiparticle weight, and

g� ¼ gcZc þ g�fð1 − ZcÞ (8)

is the effective g factor of the heavy quasiparticles at the
Fermi surface (FS), where g�f ¼ gfð2mJÞ ¼ 5.7. At high
temperatures, g� ≈ 2 reflects the conduction character of the
FS, but as the temperature is lowered, the g factor rises
towards g�f as the FS acquires f character. The evolution of
g�ðTÞ, computed using the temperature-dependent mean-
field parameters (Fig. 1), is qualitatively similar to that
observed in β-YbAlB4, but the asymptotic value at low
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temperatures is twice as large as that seen experimentally.
Details of the computation can be seen in the Supplemental
Material [18]. In the Ising limit, the f band responds
uniquely to z-axis fields, so that when a field is applied at
an angle θ from the plane perpendicular to the z axis, we
may decompose the g factor in components parallel and
perpendicular to the c axis

g�ðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg�∥ sin θÞ2 þ ðg�⊥ cos θÞ2

q
: (9)

At high temperatures, g�ðθÞ ¼ gc is isotropic, but at low
temperatures, g�ðθÞ ∼ 5gf sin θ exhibits Ising anisotropy
(Fig. 1 inset).
Next, we consider the effect of hyperfine coupling on the

Kondo lattice ESR signal. A small isotopic percentage
(ni ≈ 14%) of the Yb atoms in β-YbAlB4 carry nuclear
spins, which give rise to a hyperfine coupling between the f
states and the nuclei [9]. The f electrons at these sites
experience a Weiss field of magnitude A that shifts the
central energy ~ϵf of the Abrikosov-Suhl resonance. When
we impurity average over the positions of the isotopic
impurities, this modifies the conduction electron self-
energy ΣcγðzÞ → ΣcγðzÞ þ δΣcγðzÞ, where

(10)

with the crosses representing the hyperfine field Aσ
ðσ ¼ �1Þ. The resulting electron self-energy

ΣcγðzÞ ¼
ð1 − niÞ ~V2

z − ~ϵfγ
þ

ni
2
~V2

z − ~ϵfγ þ A
þ

ni
2
~V2

z − ~ϵfγ − A
; (11)

contains two extra resonances, shifted by the hyperfine
coupling constant A, which lead to two corresponding side
peaks in the ESR lines at low temperatures, as shown in
Fig. 2. Thus, we are able to interpret the appearance of
hyperfine peaks in the ESR signal of β-YbAlB4 as a
consequence of the hyperfine splitting of the resonant
scattering in this Kondo lattice.
Now we turn to a discussion of the ESR signal intensity

in β-YbAlB4. Here, we employ a sum rule relating the
quasiparticle, or Pauli component of the magnetization to
the ESR intensity. The ESR intensity is the field integral of
the absorbed power, IESR ∝

RHmax
0 χ00þ−ðν0; HÞdH, where

Hmax is the maximum field applied and ν0 is the fixed ESR
frequency. We can write this in the form

IESR ∝ H0

Z
Hmax

0

χ00þ−ðν0; HÞ
ν0

g�μBdH; (12)

where H0 ¼ ν0=ð2g�μBÞ is the resonance field. Now, since
the integrand is an even function of ν0 − 2g�μBH, it follows
that χ00þ−ðν0;HÞ ¼ χ00þ−ðν;H0Þ, where ν ¼ 2g�μBH. Writing
dν ¼ 2g�μBdH, then,

IESR ∝
H0

2

Z
νmax

0

χ00þ−ðν; H0Þ
ν

dν; (13)

where νmax ¼ 2g�μBHmax, and we have used the narrow-
ness of the peak to replace ν0 → ν in the denominator.
There is also a sum rule for the total transverse static
susceptibility, given by the Kramers-Krönig relation

χ0þ−ð0; H0Þ ¼
1

2π

Z
∞

−∞

χ00þ−ðν; H0Þ
ν

dν: (14)

In anisotropic f-electron systems like β-YbAlB4, the
transverse susceptibility is dominated by Van Vleck
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FIG. 1 (color online). Temperature dependence of the thermally
averaged g factor. The parameters used were ϵf ¼ −0.15 eV and
V ¼ 0.26 eV. See details of the mean field solution in the
Supplemental Material [18]. The inset shows the anisotropy of
the g factor in the Ising limit.
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FIG. 2 (color online). ESR signal computed using the mean-
field theory, including the effect of hyperfine coupling in the
Abrikosov-Suhl resonance. Here, A ¼ 7.5 × 10−6 eV and
Γ ¼ 7.2 × 10−7 eV. The low temperature curve was rescaled
by a factor of 10. Note the development of satellite peaks at low
temperatures.
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paramagnetism, and is temperature independent. In this
situation, (14) plays the role of a magnetic f-sum rule. In
fact, the static susceptibility χ0ðν ¼ 0; H0Þ ¼ χPauli þ χVV
is a sum of Pauli and Van Vleck (VV) susceptibilities,
where the Pauli contribution derives from low-frequency
spin-flip processes, lying within the frequency range
detected by ESR, whereas the Van-Vleck contributions
derive from much larger crystal-field frequencies. In this
way, we see that the ESR intensity measures the Pauli
component of the transverse magnetization,

IESRðTÞ ∝ 2πH0χPauliðTÞ: (15)

Experimentally, both the transverse static susceptibility
[χTotalðTÞ ¼ χ0, [19]] and the ESR intensity [IESRðTÞ ¼ I0,
[9]] are temperature independent. While the large constant
value of the total susceptibility reflects its Van Vleck
character, telling us that the total spectral weight in
Eq. (14) is conserved, the temperature independence of the
ESR intensitymeans that the Pauli contribution to the spectral
weight is also conserved. In the Ising limit, as the hybridi-
zation turns on, there is a large reduction in the conduction
electron character of the FS, giving rise to a much reduced
transverse magnetization and ESR intensity. Thus, to account
for these features we need to reinstate the finite CEF.
In the presence of a CEF level, the decomposition of the

quasiparticles into conduction and f electrons contains
an additional amplitude to be in the excited crystal field
state jf3=2βi,

jnkσi ¼ anσjckσi þ bnαjf5=2αi þ cnβjf3=2βi: (16)

The low temperature Pauli part of the transverse suscep-
tibility is written as χPauli ¼ N�ð0Þjh1k↑jMþj1k↓ij2,
where N�ð0Þ ∼ 1=TK is the low temperature quasiparticle
density of states; thus, the ratio between the zero and room
temperature intensities is given by

IESRð0Þ
IESRðT > TKÞ

∝
N�ð0Þ
Ncð0Þ

jh1k↑jMþj1k↓ij2
μ2B

; (17)

where Ncð0Þ ∼ 1=W is the conduction electron density of
states and the matrix element at high temperatures is equal
to μ2B. The matrix element of the lower band (n ¼ 1) is
jh1k↑jMþj1k↓ij2¼μ2Bja1↑a1↓þgf

ffiffiffi
3

p ðb1↑c1↓þc1↑b1↓Þj2.
Transitions between the 5=2 and 3=2 states happens via an
intermediate conduction state,

giving rise to a transition matrix element between the
crystal field states of magnitude ~V2=W ∼ TK . The ground-
state quasiparticle amplitudes are, thus, of order

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TK=W

p
,

1, TK=ΔX, respectively. In the pure Ising limit (ΔX → ∞),
we have IESRð0Þ=IESRðT > TKÞ ∼ TK=W ≪ 1, but at
intermediate anisotropy (ΔX= ~V ≳ 1), new contributions
to the transverse magnetization appear and it acquires a
value of order unity, IESRð0Þ=IESRðT > TKÞ ∼WTK=Δ2

X ¼
ð ~V=ΔXÞ2 ∼ 1.
The preservation of ESR intensity at low temperatures

can also be understood in terms of magnetic sum rules
(Fig. 3). From Eq. (13), we see that the ESR signal is a kind
of “magnetic Drude peak” in the dynamical spin suscep-
tibility, slightly shifted from zero frequency by the applied
magnetic field. In a simple hybridization model with Ising
spins, there is a transfer of magnetic Drude weight to high
energies, a magnetic analog of the spectral weight transfer
which develops in the optical conductivity [20]. However,
when a crystal field is introduced, the transfer of spectral
weight to high energies is compensated by the downward
transfer of spectral weight from the crystal field levels due
to admixture of �3=2 states into the heavy bands. This
preserves a fraction of order Oð ~V=ΔXÞ2 of the low
frequency spectral weight.
Although we have not calculated it in detail, we note that

the intermediate anisotropy limit allows us to understand
the reduction of the ESR anisotropy. In particular, the
momentum-space anisotropy of the hybridization matrices
Vkσγ will introduce a k-dependent rotation of the field
quantization axes. Quite generally, this effect will broaden
the ESR line, reducing both the average value of the g factor
and the degree of anisotropy of the signal.
Our theory suggests various experiments to shed further

light on our understanding of the spin paramagnetism of
heavy fermion systems. In particular, since β-YbAlB4 is a
Pauli limited superconductor, we expect its upper critical

(a) (b)

(c) (d)

FIG. 3 (color online). Schematic plots of the bands (a) Ising
limit and (c) intermediate anisotropy. The arrows indicate the
order of magnitude of the possible excitations. Imaginary part of
the transverse spin susceptibility (b) Ising limit and (d) inter-
mediate anisotropy. The arrows indicate the flow of spectral
weight as the temperature is lowered.
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field Hc2 to be inversely proportional to the effective g
factor, so measuring the angular dependence of Hc2 would
allow us to independently confirm the size and anisotropy
of the g factor. It would also be interesting to examine
whether similar Ising anisotropic systems, such as CeAl3 or
URu2Si2 and the quasicrystal YbAlAu [21] exhibit ESR
signals. Our emergent hybridization model also raises
many interesting questions. For example, what is the
underlying origin of the sharp f-electron ESR line, which
we have modeled phenomenologically? Moreover, is there
a connection between the ESR resonance and quantum
criticality in both β-YbAlB4 [5–9] and YbRh2Si2 [22,23]?
Tantalizingly, α-YbAlB4, a system with a structure locally
similar to the β phase, does not exhibit a g shift, yet iron
doping appears to drive it into quantum criticality where a g
shift develops in the ESR [24], suggesting these two effects
are closely related. Clearly, these are issues for further
investigation.
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