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We study the anisotropic 3D Hubbard model with increased nearest-neighbor tunneling amplitudes
along one direction using the dynamical cluster approximation and compare the results to a quantum
simulation experiment of ultracold fermions in an optical lattice. We find that the short-range spin
correlations are significantly enhanced in the direction with stronger tunneling amplitudes. Our results
agree with the experimental observations and show that the experimental temperature is lower than the
strong tunneling amplitude. We characterize the system by examining the spin correlations beyond
neighboring sites and determine the distribution of density, entropy, and spin correlation in the trapped
system. We furthermore investigate the dependence of the critical entropy at the Néel transition on
anisotropy.
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The Hubbard model is one of the simplest condensed
matter models incorporating the complex interplay between
the itinerant and localized behavior of fermions on a lattice.
Its phase diagram is expected to contain a number of
interesting phases, such as pseudogap states, magnetic
long-range order, and d-wave superconductivity [1–6].
Capturing the entire phase diagram theoretically has turned
out to be a challenging task, where no unbiased numerical
method exists in the interesting strongly correlated region.
Furthermore, a detailed validation of theoretical results by
comparison to measurements in real materials is often
hindered by their structural complexity and limited knowl-
edge of their system parameters.
In this context, the controlled setting of ultracold

fermions in optical lattices offers the possibility to directly
realize the Hubbard model [7,8] in an experiment and has
allowed for studying the metal to Mott insulator crossover
[9,10]. At half filling, magnetic correlations are expected to
arise at lower temperatures, as a consequence of super-
exchange, and ultimately create a Néel phase characterized
by long-range antiferromagnetic order. While this has so far
not been accessed experimentally, short-range quantum
magnetism has been observed in a recent experiment [11].
In particular, antiferromagnetic spin correlations on neigh-
boring sites were measured using an anisotropic simple
cubic lattice configuration, in which the tunneling along
one direction was enhanced. In contrast to previous
measurements, where a perturbative high-temperature
expansion was sufficient to describe the system [12–14],
understanding this new quantum simulation experiment
requires a more sophisticated theoretical approach. Open

questions included the influence of the anisotropy on the
temperature of the system and the entropy distribution in
the trap.
Although the thermodynamics, spin correlations, and

Néel transition temperature for the isotropic 3D Hubbard
model have been calculated with different numerical
methods [15–19], the anisotropic Hubbard model was only
studied in the Heisenberg limit [20], where the Néel
temperature was found to drop continuously to zero as
the interchain coupling decreases. However, the experiment
[11] is carried out at weak to intermediate interaction
strength, where charge fluctuations cannot be ignored.
There, the dependence of the Néel temperature on
anisotropy and the behavior of the strength, range, and
orientation of spin correlations are unknown. In this Letter
we perform a quantitative analysis of the anisotropic
Hubbard model using the dynamical cluster approximation
(DCA) [21] and compare it to the results of a quantum
simulation experiment using ultracold fermions in an
optical lattice [11]. To take into account the trapping
potential in the experiment, we use the local density
approximation (LDA), which has been proven to be
accurate in the temperature region relevant for comparison
with the experiment [22–24]. The calculated and exper-
imentally measured spin correlations are found to be in
good agreement for temperatures down to the tunneling
energy, showing a strong enhancement for large tunneling
anisotropies. However, the calculated critical entropies for
long-range magnetic order in the anisotropic homogeneous
system are found to be below the maximum value of the
isotropic case at U ¼ 8t.
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The Hamiltonian of the anisotropic Hubbard model on a
cubic lattice is given by

Ĥ ¼ −t
X

r;σ

ðĉ†rþexσ ĉrσ þ H:c:Þ

− t0
X

r;σ

ðĉ†rþeyσ ĉrσ þ ĉ†rþezσ ĉrσ þ H:c:Þ

þ U
X

r

n̂r↑n̂r↓ − μ
X

r;σ

n̂rσ; (1)

where ĉ†rσ (ĉrσ) creates (annihilates) a fermion at lattice site
r with spin σ ∈ f↑;↓g; n̂rσ ≡ ĉ†rσ ĉrσ denotes the occupa-
tion number operator; ei denotes the unit vector (setting the
lattice spacing to 1) along the direction i ∈ fx; y; zg. The
system has the tunneling amplitude t along the x axis and t0
in the directions y, z as shown in Fig. 1(a). The repulsive
on-site interaction energy is denoted by U > 0 and the
chemical potential by μ. The ratio t=t0 will be referred to as
the anisotropy of the system. In this Letter, we consider
t=t0 ≥ 1, covering the range from an isotropic 3D system to
weakly coupled 1D chains.
We study the physical properties of Eq. (1) with the

DCA, using the numerically exact continuous time aux-
iliary field quantum Monte Carlo impurity solver [25,26].
The results were extrapolated in cluster size to obtain
results in the thermodynamic limit [17,27].

We have calculated the thermodynamic properties
including energy (e) and density (n) per site at a given
chemical potential μ and the inverse temperature β ¼ 1=T
(setting kB ¼ 1). The entropy per site sðβÞ is obtained by
numerical integration

sðβÞ ¼ sðβ0Þ þ fðβÞβ − fðβ0Þβ0 −
Z

β

β0

fðβ0Þdβ0; (2)

with fðβÞ ¼ eðβÞ − μnðβÞ. Tabulated equation of state data
and technical details may be found in the Supplemental
Material [28].
In addition to the thermodynamic properties, we calcu-

late the equal-time spin correlation function

CðΔÞ ¼ −
2

L

X

r

hŜzrŜzrþΔi; (3)

where Ŝzr ¼ 1
2
ðn̂r↑ − n̂r↓Þ, Δ is a lattice vector, and L is the

number of sites. Figure 1(b) shows CðexÞ for various
fillings and temperatures at fixed t=t0 ¼ 7.36 and
U ¼ 1.4375t, which was used in the experiment of
Ref. [11]. Antiferromagnetic correlations between nearest
neighbors (NNs) correspond to positive values of CðexÞ.
The signal is greatly enhanced for T ⪅ t and close to half
filling. At fixed temperature and interaction strength, the
NN spin correlation along the longitudinal direction CðexÞ
is enhanced with anisotropy t=t0, while the correlation
along the transverse direction CðeyÞ is suppressed, see
Fig. 1(c). T=t0 is higher in the anisotropic case and thus the
development of spin correlations in the transverse direction
y is suppressed. At the same time CðexÞ is enhanced
because singlet formation is facilitated by the effective
lowering of dimensionality [29]. This in turn is caused by
the difference in the relevant energy scales: T and t are of
the same order but an order of magnitude larger than t0.
The quantum simulation experiment is performed as

described in detail in Ref. [11] using a balanced spin-
mixture of themF ¼ −9=2, −7=2 sublevels of the F ¼ 9=2
hyperfine manifold of 40K. About 60 000 fermions are
prepared at 10% of the Fermi temperature in a harmonic
optical dipole trap. The gas is then heated to control the
entropy per particle Sin=N in the dipole trap. This is
measured using fits to a Fermi-Dirac distribution. After
setting the s-wave scattering length to 106(1) Bohr radii, an
anisotropic cubic optical lattice operating at a wavelength
of λ ¼ 1064 nm is turned on using an S-shaped ramp
lasting 200 ms. The parameters of the Hubbard model
describing the final lattice configuration are computed
using Wannier functions.
In order to detect the number of singlets and triplets

consisting of two neighboring atoms with opposite spins,
we suddenly ramp to a deep simple cubic lattice, sup-
pressing all tunnelings. A magnetic field gradient is then
used to induce coherent oscillations between singlet and
triplet states. Subsequently, we merge neighboring sites

(a)

(c)

(b)

FIG. 1 (color online). (a) Sketch of the anisotropic 3D Hubbard
model according to Eq. (1). (b) NN spin correlation CðexÞ versus
filling and temperature for t=t0 ¼ 7.36, U ¼ 1.4375t in a homo-
geneous system. (c) NN spin correlation along the strong
tunneling CðexÞ (upper surface) and in the transverse direction
CðeyÞ (lower surface) for a homogeneous system at half filling
and T ¼ 0.5t as a function of anisotropy and interaction strength.
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adiabatically using a tunable-geometry optical lattice [30]
and detect the number of double occupancies in the lowest
band created by merging. The difference between the
fraction of atoms detected in a singlet (ps) or triplet
(pt0) configuration can be used to compute the spin
correlator

−hSxrSxrþexi − hSyrSyrþexi ¼ ðps − pt0Þ=2; (4)

which is equal to CðexÞ given the SU(2) invariance of the
Hubbard model, Eq. (1).
Results and discussions.—Figure 2(a) shows the calcu-

lated and experimental NN spin correlationversus anisotropy
t=t0; owing to the experimental realization, the interactionU=t
decreases for larger anisotropies in this scan. We find good
agreement between the DCAþ LDA calculation and the
experimental data assuminganentropyper particleS=N in the
rangeof1.4 to1.8.Foranisotropies⪆5 theexperimententersa
regime where corrections to the single band Hubbard model,
Eq. (1), may start to play a role in the shallow optical lattice
[31]. Close to the isotropic limit, the second order high-
temperature series expansion (HTSE) with S=N ¼ 1.7
describes the data well. For increasing anisotropies, the
HTSE becomes unreliable as the expansion parameter βt
reaches 1. The inset of Fig. 2(a) shows that the introduction of
the anisotropy leads to a situation where the temperature
becomes comparable to or lower than the strong tunnel
coupling t. The average CðexÞ increases monotonically with
anisotropy, which is a consequence of both the enhancement
ofcorrelationsforagivenβt andadditionally the increasingβt.
For a fixed anisotropy t=t0 ¼ 7.36, Fig. 2(b) shows the

trap averaged CðexÞ versus entropy per particle (for the
experimental data the horizontal axis denotes the initial
entropy per particle measured before loading into the
lattice). Without any free parameters and assuming no
heating, we find very good agreement for entropies of
1.4kB and above, showing that magnetic effects in the
Hubbard model can be accurately studied in this regime.
For lower entropies, the experimentally measured spin
correlation does not increase further, deviating from the
theoretical prediction. This suggests that additional heating
may have occurred during the optical lattice loading
process, or the system may not have fully equilibrated in
the lattice for the lowest initial entropies. This is an
important outcome of this study not deducible from the
experimental data alone. A similar situation is found in
previous studies of dimerized and simple cubic optical
lattices [11,13]. The inset of Fig. 2(b) shows a comparison
at a different anisotropy t=t0 ¼ 4.21, where similar agree-
ment at high entropies and deviations at low entropies are
found. The observed heating, which varies depending on
the system parameters, may be caused by nonadiabaticity
with respect to changes of the local Hamiltonian, or may be
due to the expected long time scale of density redistribution
within the harmonic trap [32].

The upper horizontal axis of Fig. 2(b) shows the temper-
ature used in the DCAþ LDA calculations. For the lowest
entropy S=N ¼ 1.4, where the experimentally measured
spin correlator matches the theoretical value, the temper-
ature is found to be T ≈ 0.88t. An anisotropic 3D system
prepared at temperatures between the strong and weak
exchange energy along and between the chains effectively

(a)

(b)

FIG. 2 (color online). Comparison of the calculated spin
correlations from DCA þ LDA calculation with the experiment.
(a) NN spin correlation for different anisotropies and interaction
strengths. The entropy per particle before loading into the lattice
is below 1.0 in the experiment. For increasing anisotropy the
interaction U=t decreases from 16.2 to 0.975. Detailed param-
eters are listed in the Supplemental Material [28]. Theoretical
calculations with different entropies per particle are shown as
symbols connected by dashed lines. The solid line shows HTSE
results with S=N ¼ 1.7. The inset shows the inverse temperature
βt versus anisotropy used in the DCAþ LDA calculations.
(b) NN spin correlation as a function of entropy per particle
for t=t0 ¼ 7.36 and U ¼ 1.4375t. The experimental data are
plotted as a function of the initial S=N before loading into the
lattice, and the dashed curve is the theoretical prediction. The
upper axis denotes the corresponding temperature determined
from the DCAþ LDA calculation. For the lowest initial entropies
the measured spin correlation deviates from the expected value.
These experimental data points agree with an approximate
entropy increase of 0.6 possibly caused by heating during lattice
loading. The inset shows a comparison with the experiment at a
different set of parameters (t=t0 ¼ 4.21, U ¼ 2.98t). There,
additional heating may have occurred below 1.8.
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realizes an array of 1D systems in global thermodynamic
equilibrium—in contrast to an array of decoupled 1D
chains, where the thermalization is hindered by negligible
tunneling between the 1D chains. It provides thus a viable
system for an experimental study with controllable param-
eters of the low-temperature regime of the Hubbard model
in effectively one dimension [33] at currently accessible
experimental entropies.
Figure 3(a) shows the calculated distribution of the

density, entropy, and NN spin correlation in the trap for
the isotropic (t=t0 ¼ 1) and anisotropic (t=t0 ¼ 7.36)
Hubbard model with the same U=t, particle number, and
entropy per particle. In order to display the density and
entropy redistribution, we tune in each case the trapping
potential to obtain the filling n ¼ 1 in the trap center and to
obtain the same total atom number [34]. The corresponding
temperatures are T ¼ 0.95t and T ¼ 0.58t, respectively
[35]. Owing to qualitatively similar equations of state
between the isotropic and anisotropic case at fixed tunnel-
ing t, we find a very similar behavior for both the density
and entropy distribution in the trap. This is in contrast with
the dimerized lattice examined in Ref. [11], which has an
energy gap. In Fig. 3(a) the NN spin correlations are more
pronounced for large anisotropy when comparing to the
isotropic case, similar to the results in Fig. 1(c). To further
characterize the state realized in the experiment, we
compute the spin correlation beyond NNs along the x
direction, shown in Fig. 3(b). It shows an alternating sign
with distance, confirming the presence of antiferromagnetic
spin correlations [36]. At large distances the spin correla-
tions are expected to decay exponentially, as the chosen
temperatures are above the critical value of the Néel
transition. For the experimentally accessible temperatures,
already the next-nearest-neighbor correlations are calcu-
lated to be below the experimental resolution.
Finally, we address the question of how the introduction

of anisotropy affects the Néel transition in a 3D half-filled

lattice. Figure 4 shows the calculated critical entropy at the
Néel transition for different anisotropies. The critical
entropy at U ¼ 4t shows a nonmonotonic behavior as a
function of anisotropy [37]. We explain this by the
reduction of the total bandwidth W ¼ 4ðtþ 2t0Þ and thus
by the effective increase of the interaction strength (U=W)
towards the optimal value U=W ≈ 2=3 for the isotropic
system [17]. Consistent with our simple argument, the
curve for U ¼ 8t decays monotonically. We find that the
introduction of anisotropy does not enhance the critical
entropy over the optimum value [S=N ≈ 0.487ð23Þ in the
present study] reached at U ¼ 8t for the isotropic case.
The estimate of the Néel temperature was obtained for a

set of clusters within the DCA simulation by looking for the
divergence of the static antiferromagnetic spin susceptibil-
ity [21]; see details in the Supplemental Material [28]. TNe ́el
was then obtained by extrapolation in cluster size as
suggested in Refs. [16] and [38]. Figure 4 shows
sðTNe ́elÞ with curve sðTÞ integrated within the paramag-
netic phase. Our results for the isotropic case, TNe ́el=t ¼
0.1955ð25Þ for U ¼ 4t and TNe ́el=t ¼ 0.3595ð83Þ for
U ¼ 8t, are consistent with previous studies [15,16].
Both estimates are slightly above the estimates
TNe ́el=t < 0.17, TNéel=t ¼ 0.3325ð65Þ obtained by dia-
grammatic determinantal Monte Carlo calculations on
larger lattices for U ¼ 4t and U ¼ 8t, respectively [19].
Conclusions.—We have computed the properties of the

3D anisotropic Hubbard model in the regime accessed by
the quantum simulation experiment. Short-range spin
correlations were shown to be enhanced by anisotropy,
even when the critical entropy at the Néel temperature is
reduced. Our theoretical results show good agreement with
our experiments, allowing us to characterize this system in
detail. In particular, using the nearest-neighbor spin corre-
lation as a thermometer, the experimentally realized tem-
perature was found to reach values below the strong
tunneling amplitude. Given the access to effectively
one-dimensional Hubbard chains featuring spin order, the
tunability of an optical lattice system may be used to probe
their excitation dynamics or the crossover from 1D to higher

(b)(a)

FIG. 3 (color online). (a) The distribution of density, entropy,
and NN spin correlation per site in the harmonic trap versus
distance from the center. The simulation is done with U ¼
1.4375t with the trap averaged entropy S=N ¼ 1.6. The chemical
potential and trapping frequency are chosen such that the filling is
n ¼ 1 at the trap center and N ¼ 50 000 for both anisotropy
ratios. (b) Extrapolated spin correlations as a function of distance
along the x axis in the paramagnetic phase for t=t0 ¼ 7.36,
U ¼ 1.44t, and half filling for different temperatures.

FIG. 4 (color online). Critical entropy per particle SðTNéelÞ=N
at the Néel transition versus anisotropy for two different inter-
actions at half filling. The data points shown with an arrow are
upper bounds owing to the difficulty of obtaining the extrapolated
TNe ́el or a reliable sðTÞ down to the extrapolated transition
temperature.
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dimensions [33]. Long-range order is obtained when the
entropy in the center of the trap [see Fig. 3(a)] is lower than
the critical entropy shown in Fig. 4. A highly anisotropic
configuration is shown to be unfavorable for experiments
aiming at the realization of the ordered state, despite
displaying greatly enhanced short-range correlations.

We thank Jan Gukelberger, Peter Staar, Michael Messer,
and James LeBlanc for useful discussions. This work was
supported by the ERC Advanced Grants SIMCOFE and
SQMS, the Swiss National Competence Center in Research
QSIT, and the Swiss National Science Foundation. The
calculations used a code based on the ALPS libraries [39,40]
and were performed on the Brutus cluster at ETH Zurich.

Note added.—Recently, we became aware of a related
finite temperature study of the 1 D Hubbard model [41].
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