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Observed crest speeds of maximally steep, breaking water waves are much slower than expected. Our
fully nonlinear computations of unsteadily propagating deep water wave groups show that each wave crest
approaching its maximum height slows down significantly and either breaks at this reduced speed, or
accelerates forward unbroken. This previously noted crest slowdown behavior was validated as generic in
our extensive laboratory and field observations. It is likely to occur in unsteady dispersive nonlinear wave
groups in other natural systems.
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Nonlinear wave groups occur in a wide range of natural
systems, exhibiting complex behaviors especially in focal
zones where there is rapid wave energy concentration and
possible “wave breaking”. The incompletely understood
interplay between dispersion, directionality, bandwidth,
and nonlinearity presents a significant knowledge gap
generally beyond analytical treatment. Here, we investigate
maximally steep, deep-water wave group behavior, but the
findings appear relevant to dispersive nonlinear wave
motion in many other natural systems.
In the open ocean, wind forcing generates waves that can

steepen and break conspicuously as whitecaps, strongly
affecting fundamental air-sea exchanges, including green-
house gases. This has stimulated recent interest in meas-
uring whitecap properties spectrally. While accurately
measuring wavelengths of individual breakers is difficult,
measuring whitecap speeds can provide a less direct but
more convenient method since a whitecap remains attached
to the underlying wave crest during active breaking. The
dispersion relation from Stokes classical deep water wave
theory discussed below (Stokes [1]) conventionally pro-
vides the wavelength from the observed whitecap speed
(Phillips [2]).
Stokes’ theory was developed for a steady, uniform

train of two-dimensional (2D) nonlinear, deep-water
waves of small-to-intermediate mean steepnessakð¼ 2π×
amplitude=wavelengthÞ, for which the intrinsic wave speed
c increases slowly with ak:

c ¼ c0½1þ 1=2ðakÞ2 þ higher order terms in ðakÞ�1=2 (1)

where c0 is the wave speed for linear (infinitesimally steep)
waves. Extending Eq. (1) computationally to maximally

steep, steady waves (Longuet-Higgins [3]), c approaches
1.1c0. Thus, increased wave steepness has long been
associated with higher wave speeds.
Natural wind waves comprise a spectrum of

modes interacting on different scales, producing evolving
wave-group patterns rather than steady, uniform wave
trains (Longuet-Higgins [4]). Here, we investigate the
“dominant” waves, i.e., those with the largest spectral
amplitudes after filtration of higher wave number compo-
nents. Within a group, each advancing dominant wave
gradually changes its height and shape, characterized
by slow forward and backward leaning of the crests
(Tayfun [5]), also transiently becoming the tallest wave.
This tallest wave may break, or else decrease in height
while advancing unbroken towards the front of the group.
In this context, previous deep-water breaking wave

laboratory studies (Rapp and Melville [6]; Stansell and
McFarlane [7]; Jessup and Phadnis [8]) suggest that
breaking-crest speeds are typically Oð20%Þ lower than
expected from linear-wave theory, contrary to the expect-
ation from Eq. (1) that steeper breaking waves should
propagate faster. Understanding this paradoxical crest
slowdown behavior is central to both refining present
knowledge on water wave propagation and dynamics,
and optimal implementation of Phillips’ spectral framework
for breaking waves (Phillips [2]; Kleiss and Melville [9];
Gemmrich et al. [10]).
Historically, an appreciable literature has developed

on non-breaking, focusing, deep-water, nonlinear wave
packets. However, only the limited studies of
Johannessen and Swan ([11,12]) identified crest slowdown
at focus, reporting an O(10%) crest-speed slowdown
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relative to its linear-theory prediction. To understand the
underlying physics, the present study investigates how very
steep unsteady, nonperiodic, deep-water wave groups
propagate when frequently assumed theoretical constraints
are relaxed, including steady-state, spatially uniform, or
slowly varying, weakly nonlinear wave train behavior. Our
goal was to investigate initial breaker speeds; hence, it was
crucial to track changes, up to the point of breaking
initiation, in dominant wave-crest speeds within evolving
nonlinear wave groups.
Methodology and results.—No presently available ana-

lytic theory can predict the evolution of fully nonlinear,
deep-water wave groups. Our primary research strategy
utilized simulations from a fully nonlinear, 3D numerical
wave code, validated against results from our innovative
laboratory and ocean-wave observations.
Our simulations were generated using a numerical wave

tank (Grilli et al. [13]). This boundary element code
simulates fully nonlinear potential flow theory and is able
to accurately model extreme water waves to the point of
overturning (Grilli et al. [14]). A programmable wave
paddle produces a specific 2D or 3D chirped wave-group
structure comprising a prescribed number of carrier waves

with given initial amplitudes, wave numbers, frequencies,
and phases. This shapes the spatial and temporal band-
widths characterizing the group structure and its spectrum.
For the simulations, including the 2D example below, the
paddle followed the displacement motion Eq. (3) described
in Song and Banner [15], with N ¼ 5, 7, and 9. We also
investigated corresponding laterally converging 3D chirped
packet cases with 10- and 25-wavelength focal distances.
In this study, breaking occurred predominantly as sequen-
tial spilling events with occasional local plunging. The
complementary wave-basin experiments described below
also included comparable bimodal, modulating nonlinear
wave packets specified by Eq. (2) in [15]. The half-power
bandwidths were Oð8Þ times broader than investigated
in [9].
Figure 1(a) shows the complex growth behavior

experienced by all dominant wave crests evolving within
a representative 2D nonlinear, nonbreaking wave group.
The initial steepest wave decays and is replaced by the
following growing wave, which grows modestly, then
slows down and is replaced by the annotated faster-growing
crest, which evolves to its maximum height and decays. As
each new crest develops, it grows (A-B-C) then slows down

FIG. 1. (a) Space-time evolution diagram of a nonbreaking 2D chirped wave group, moving toward the right, showing the decay of the
initial tallest crest, growth of the following tallest crest, and complex transitions of other developing crests. Wave properties at annotated
times A–E are shown in panels (b), (c), and (d). T and L are reference carrier-wave period and wavelength scales. (b) Tallest crest shapes
at evolution times A–E, showing crest transition from forward-leaning through symmetry to backward-leaning (c) horizontal location of
the tallest crest (solid line) versus time. The steeper slope between B and D shows the crest-speed reduction relative to c0 (dotted line).
Horizontal locations versus time of the two adjacent zero crossings (long-short dashed lines) are also shown. (d) Trajectory of the
corresponding tallest crest speed c, normalized by c0, against local crest steepness sc defined in the Letter. Stokes theory prediction
[Eq. (1)] is shown in terms of sc (dashed line) for comparison. The apparent crest-speed surge at sc ≈ 0.2 is spurious, as explained in
the Letter.
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and attenuates (C-D), then accelerates (D-E) back to its
original speed while advancing towards the front of
the group.
Figure 1(b) shows the spatial wave profile in greater

detail at the evolution times A–E in Fig. 1(a). The dominant
wave grows asymmetrically, initially leaning forward as it
steepens within the group. In the absence of breaking, the
steepest wave advances leaning forward, relaxing back to
symmetry near its maximum height (the focal point), then
leans backwards past the maximum elevation. Forward-
leaning crests are accompanied by backward-leaning
troughs, and vice versa. This leaning is a generic feature
of each crest in natural, unsteadily evolving dispersive
nonlinear water wave groups (Tayfun [5]).
Relative to the speed of a classical (symmetrical) Stokes

wave, significant crest (and trough) speed changes accom-
pany the leaning, measured by tracking the (horizontal)
speed of a given wave-crest profile in space and time. The
generic crest-speed slowdown is identified in Fig. 1(c) by
the steeper slope of the displacement-time curve between B
andD relative to the indicated linearwave trajectory (speed
c0), where c0 is the speed of the spectral peak determined
from the computed wave packet dispersion relation. The
actual speed reduction relative to c0 is 18%. This lasts about
one wave period, with a spatial extent of about one
wavelength. Figure 1(d) shows a typical trajectory when
crest speed is plotted against local crest steepness
sc ¼ ackc, where ac is the time-dependent crest height
above mean-water level and the corresponding local wave
number kc is defined as π divided by the local zero-crossing
separation spanning the given crest. Introducing sc was
necessary to describe the complexity of unsteady nonlinear
wave crest behavior, and was easily computed for Stokes
waves for the crest-speed comparison shown.
The significant departure of the crest speed versus crest

steepness trajectory for waves in unsteady wave groups
compared with the classical Stokes result for steady wave
train prediction underpins the central findings in this Letter.
In this example, the maximum crest steepness marginally
precedes the slowest crest speed, with the trajectory looping
counterclockwise about this point. This trajectory is not
generic, since other simulated cases and the experimental
curve of Fig. 2(b) below show clockwise looping. Further
studies are needed to explain this effect. Also, as seen in
Fig. 1(d), the asymmetry of the dominant wave shape near
its maximum steepness results in different crest speeds for
growing and decaying crests of the same steepness. Note
that the local peak in crest speed between A and B at sc ≈
0.2 is an artifact of our crest-tracking algorithm, resulting
from the subtle crest transition that occurs at (x=L ∼ 4,
t=T ∼ 13.5) in Fig. 1(a) when the detected crest location
jumps abruptly from the receding crest to the newly
developing crest.
The above discussion was for 2D waves, but laterally

focused (3D) wave fronts in both our simulations and

wave-basin investigation (described below) show similar
leaning and crest-slowdown behavior, with the subsequent
breaker-crest speed initiated at ∼0.8c0.
Relative to classical ocean-wave speeds, our model

results for the speeds of the left-hand and right-hand zero
crossings spanning the tallest wave shows that their average
remains close to the linear wave speed c0 [Fig. 1(c)], with
modest local fluctuations of (þ7% to −1%). Hence, aside
from the strong unsteady leaning crest and trough motions,
the waves propagate largely as expected from Stokes
theory.
Breaking onset and speed.—If the tallest wave in the

group proceeds to break rather than recur, our simulations
found that breaking onset occurs when this wave attains
maximum steepness and close to its minimum crest
speed. This can certainly explain why initial breaking
wave crest speeds are observed to be Oð80%Þ of the linear
carrier-wave speed (Rapp and Melville [6]; Stansell and
McFarlane [7]; Jessup and Phadnis [8]). This behavior was
found in all our simulations and verified in our laboratory
measurements [see Fig. 2(b)].
Insight on whether the crest slowdown is a nonlinear

effect is available from previous linear and weakly non-
linear theory. For uniform, deep-water, linear gravity wave
trains, the carrier wave speed c0 follows from the dispersion
relation ω ¼ ðgkÞ1=2 and c0 ¼ ω0=k. However, narrow
band wave groups are characterized by nonuniformity in
both space and time. Correct to Oðν2Þ, a local frequency
can be defined (Chu and Mei [16]) as

ω ¼ ðgkÞ1=2 − 1

2
βaxx=a (2)

where ν is a characteristic spectral bandwidth, β ¼ dcg=dk,
cg ¼ dω0=dk is the linear group velocity, and aðx; tÞ is the
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FIG. 2. (a) Measured surface profiles of a five-wave, bimodal
wave packet, at times A–E, with breaking initiation at C.
(b) Corresponding trajectory of normalized crest speed c=c0 of
the tallest wave, against local crest steepness sc. The ensemble-
mean breaker speed trajectory is shown by the dot-dash line. The
dashed line shows Stokes’ prediction. Reference wave scales
were L ¼ 1.09 m, T ¼ 0.836 sec.
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wave train envelope that satisfies the linear Schrödinger
equation (Mei [17]). The associated local phase speed is
given approximately by

c ≈ c0 − 1

2
βaxx=ðakÞ: (3)

Equations (2), (3), and the associated relationships above
show that c varies along the group and in time. Since β < 0,
c attains its lowest value at the envelope maximum, where
the largest crest occurs (axx < 0). The other crests and
troughs in the group also experience similar local speed
variations.
Furthermore, for dispersive, weakly nonlinear unsteady

wave groups, we find that the slowdown effect due to
dispersion is counterbalanced by the increase in phase
speed due to nonlinearity [Eq. (1)], limiting the phase-
velocity slowdown within the group (Fedele [18]).
Our focus on breaking-crest slowdown for large

wave steepness approaching breaking onset is beyond
conventional analysis methodologies. We now validate
our fully nonlinear numerical simulation findings on
wave-crest slowdown against laboratory and open-ocean
measurements.
Wave basin measurements.—Complementary experi-

ments were performed in a 27 m × 7.75 m wave basin
with 0.55 m water depth. Wave groups were generated at
one end of the basin by a computer-controlled wave
generator comprising 13 bottom-cantilevered, flexible-
plate segments. Lateral focusing was achieved by suitably
setting the phase of each segment (Dalrymple [19]). A 95%
absorbing beach minimized end reflections. Heights of
evolving wave groups matching the simulations were
measured to within �0.5 mm by a traversable in-line array
of nine wave-wire probes spanning one wavelength. c0 was
calculated using linear theory from the spectrally weighted
wave frequency of the wave probe closest to the wave
generator.
Identified wave crests were tracked between the wave

probe signals, their motion interpolated using cubic splin-
ing and their crest speeds extracted. An overhead one-
megapixel videocamera imaged the breaking crests at
100 Hz. The imagery, corrected for lens and mounting
distortion, was transformed onto a regular grid, sequential
leading-edge location and lateral extent data were extracted
for each breaker and their speeds determined.
Figure 2(a) shows surface profiles measured at evolution

times A–E, with breaking initiation near C, for a modu-
lating five-wave, bimodal breaking case. Figure 2(b) shows
its crest speed trajectory. Also shown is the ensemble-mean
trajectory for spilling-breaker speeds in the measured
ensemble of 240 modulational and chirped 2D and 3D
cases. The measurement resolution enabled resolving the
crest leaning and slowing at the maximum surface elevation
(C). Crest-speed oscillations observed for smaller-steepness
waves (e.g., at B), are the same crest leanings, but occurring

earlier as the crest moves through the wave group. This
figure confirms the reduced speeds of crests preceding
breaking onset and the accompanying generic breaker
slowdown.
Open ocean observations.—Our wave acquisition stereo

system (WASS) was deployed at the Acqua Alta oceano-
graphic tower 16 km offshore from Venice in 17 m water
depth (Fedele et al. [20]; Benetazzo et al. [21]). WASS
cameras were 2.5 m apart, 12.5 m above sea level at 70°
depression angle, providing a trapezoidal field of view with
sides increasing from 30 to 100 m over a 100 m extent. The
mean windspeed was 9.6 ms−1 with a 110 km fetch. The
unimodal wave spectrum had a significant wave height
Hs ¼ 1.09 m and dominant period Tp ¼ 4.59 s. Most
observed crests were very steep, with sporadic spilling
breaking. We describe results using 21,000 frames captured
at 10 Hz.
The speeds c of crests reaching maximum local steep-

ness within the imaged area were estimated using a crest-
tracking methodology, as in the wave-basin measurements.
The data were filtered above 1.5 Hz to remove short riding
waves. Subpixeling reduced quantization errors in estimating
the local 3D crest position from the surface-displacement
time series spaced along the wave-propagation direction.
The local reference c0 was calculated from the peak fre-
quency of the short-term Fourier spectrum of a time series
of duration D centered at the crest event, using D ¼
120 sec as a suitable record length and Doppler corrected
for the in-line 0.20 ms−1 mean current. We analyzed 200
dominant local wave crests with elevations η > 0.3Hs and
local crest steepness sc > 0.3ðscÞmax using the observed
ðscÞmax ¼ 0.45, and determined ∼12; 000 evolving crest
speeds from a 60-point spatial grid, with 0.5 m spacing
along the wave-propagation direction.
Values of D and η were chosen so that the empirical

probability density function (pdf) of c=c0 was insensitive to
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FIG. 3. Probability density function of normalized crest speed
c=c0 for all crests transitioning through a maximum local crest
steepness, from a 35-minute WASS stereo-video sequence from
an ocean tower. Note, the tall peak at c=c0 ∼ 0.75. Local standard
error bounds are indicated.

PRL 112, 114502 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

114502-4



changes in these parameters. Figure 3 shows the pdf, which
peaks at close to 0.75c0. Values for c=c0 > 1.5 (7% of the
total ensemble) are outliers with >15% uncertainty in
estimating c0 and crest location. This figure highlights
the observed systematic crest slowdown, consistent with
the nonlinear simulations and experiments described above.
Discussion and conclusions.—Our Letter provides fun-

damental new insights into the behavior of chirped,
bimodal, and open-ocean unsteady steep, deep-water non-
linear wave groups. We found that as carrier waves reach
maximum steepness, their crests decelerate strongly
[Oð20%Þ], which results from unsteady crest leaning
modes arising from the complex interplay between non-
linearity and dispersion. This behavior departs markedly
from the speed increase with wave steepness predicted by
steady-wave train theory.
Our findings have significant, broader consequences. For

ocean waves, they explain the puzzling [Oð20%Þ] reduced
initial speed of breaking-wave crests, central to assimilating
whitecap data accurately into sea-state forecast models.
Parameterizations of air-sea fluxes of momentum and
energy, which depend on the square and cube of the
sea-surface velocity, may be modified appreciably.
Atmospheric and oceanic internal waves, (Helfrich and
Melville [22]), should also experience similar effects to
those described here. As noted above, even weakly non-
linear, unsteady dispersive water-wave groups described by
the nonlinear Schrödinger equation (NLSE) (Zakharov
[23]) exhibit crest slowdown. The NLSE is commonly
used to describe wave phenomena in other natural systems
[e.g., geophysical flows (Osborne [24]), nonlinear optics
(Kibler et al. [25], Kibler et al. [26])]. Exploring implica-
tions of the present findings should provide refined insights
when the wave-group nonlinearity and bandwidth are
beyond the validity of the NLSE.
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