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It is predicted that the optical force experienced by a dielectric particle excited resonantly by a surface
wave can be directed opposite to the incident power flow when the exciting wave is a backward one. This is
consistent with the electromagnetic momentum flow of the backward wave being directed opposite to the
power flow. The magnitude of the force can be comparable to the momentum flow of the surface wave.
Such forces bring a deeper understanding of the electromagnetics of backward surface waves and can be
used in integrated photonic circuits and optofluidic devices.

DOI: 10.1103/PhysRevLett.112.113903 PACS numbers: 42.25.Fx, 42.50.Wk, 42.82.Et

The existence of electromagnetic forces acting on polar-
izable objects follows from Maxwell’s theory [1]. The
small value of these forces, however, delayed their exper-
imental confirmation until the measurement of radiation
pressure by Lebedev [2]. After the invention of laser, the
optical forces enabled the manipulation of micro-objects
[3], but their magnitude remained small due to the low
refractive index contrast, especially in liquids. The scatter-
ing and the forces can be increased by using resonances, for
example, whispering gallery modes (WGMs) in dielectric
microparticles. It was calculated [4] and measured [5] that
the scattering of a plane wave by a microsphere produces
resonant peaks of force. Although the peaks were narrow,
their magnitude was not very large due to the weak
coupling of the WGMs to laser beams. To increase it,
the evanescent fields of waveguides or total-internal-
reflection prisms can be used.
Multiple applications of WGMs [6] stimulated renewed

interest in resonant optical forces. Optofluidic technologies
may allow manipulation and sorting of the particles
according to their WGM resonances. Although the resonant
forces excited by evanescent tails were studied theoretically
[7–9], the size deviations in the particle ensemble prevented
their registration [7].
Recent experiments demonstrated that microspheres near

an optical fiber can experience propelling forces whose
magnitudes were estimated to reach an equivalent of ∼60%
of power absorption, based on Stokes’s law [10]. The giant
resonant force was interpreted as being due to the excitation
of a WGM during which a large portion of the incident
electromagnetic momentum flow is converted into the
propelling force [11].
The efficient momentum-to-force conversion in the

system consisting of a waveguide and a WGM particle
opens new research directions. One interesting question is,
what happens when the exciting wave is a backward one,
i.e., has the phase and group velocities in the opposite
directions? Would the optical force be negative so that is to
pull the particle towards the source of energy? How is the

force related to the electromagnetic momentum flow of the
backward wave? How is the momentum flow related to the
power flow? These fundamental questions are investigated
in this Letter. In particular, it is shown that a backward wave
can indeed create a pulling force.
In addition to its fundamental importance, the momen-

tum exchange between a backward wave and a WGM
resonator is a new way of creating an optical pulling force,
which attracted attention recently due to its peculiar nature
and applications for particle manipulation. Initially, the
existence of a pulling force created by a Bessel beam was
found in acoustics [12,13]. Later, the pulling force under
illumination by a Bessel beam was shown to exist in optics
[14]. The experimental demonstration of a tractor effect
using a solenoid beam, which can be expressed as a
superposition of copropagating Bessel beams, was reported
in Ref. [15]. The Bessel beams can be replaced by strongly
nonparaxial beams [16] or a superposition of plane waves
steeply angled towards each other [17,18]. The pulling
force can also be generated by bichromatic copropagating
beams [19]. The direction of the force can be controlled
using two counterpropagating beams [20] or copropagating
beams with varying phase between them [21] in the so-
called optical conveyor. The pulling force was created by
free-space beams in Refs. [12–21].
It was also suggested that a backward wave may create a

reverse force on a dipole [22]. The proposed backward-
wave structure was either a waveguide with a high
permittivity dielectric rod [23] or an array of such rods
[22]. However, the properties of the reverse force were not
investigated. The appearance of the reverse force was
deduced from the formula in which the force is determined
only by the incident wave. It neglects the field induced by
the dipole itself due to the interaction with the structure.
In this Letter, we address the use of backward surface

waves to efficiently excite WGMs in a particle and create
forces with magnitudes comparable to the momentum flow
of the incident wave. We rigorously account for the strong
interaction between the waveguiding structure and the
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WGM resonator. The use of backward guided waves can be
compatible with modern optofluidic technologies and can
also expand the optomechanical properties of various
integrated photonic circuits [24–27]
Our physical model consists of a particle with dielectric

constant εs located at a distance d from a plasma slab; see
Fig. 1(a). The plasma slab is chosen based on its ability to
support both backward and forward waves [28]. An initial
surface wave is scattered by the particle and creates a
force. We consider a two-dimensional case (no dependence
on z) and assume a e−iωt dependence for all complex
fields fEx; Ey;Hzg.
The initial guided wave with the propagation wave

number h0 has a symmetric profile of Hz:

Hzðx; yÞ ¼ H0eih0x
�

e−ϰbðjyj−L=2Þ jyj > L=2
coshðϰpyÞ

coshðϰpL=2Þ jyj < L=2;
(1)

where ϰp;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 − εp;bω

2=c2
q

are the evanescent (trans-

verse) wave numbers in the plasma and background,
respectively. The dielectric constant of the plasma slab is
εpðωÞ ¼ 1 − ω2

p=ω2, where ωp is the plasma frequency.
The dispersion properties of mode (1) are shown in

Fig. 2. The dispersion curve has intervals that correspond to
forward and backward waves. For a given ω, a backward
wave and a forward wave coexist but have different wave
numbers h. The backward wave has a larger h and,
therefore, decays faster outside of the slab. Large values
of h are of little interest since the decay rate ϰb becomes
very large for the coupling to the particle. It seems practical
to work at hc=ω ∼ 1 − 2. In this regime, both waves have
comparable values of h and that can lead to the intermode
energy conversion due to the scattering.
We choose Lωp=c ¼ 0.2 and fix the operating frequency

on the dispersion curve, see Fig. 2: hbc=ωp ¼ 1.5,
hfc=ωp ¼ 1.248, ω=ωp ¼ 0.9123 (εp ¼ −0.2014). These
values correspond to phase indices nb ¼ chb=ω ¼ 1.644
and nf ¼ chf=ω ¼ 1.368. We will consider two cases, A
and B; see Fig. 1(b). In case A, the incident wave is the
backward one (h0 ¼ hb) and originates at x → þ∞. In case
B, the incident wave is the forward one (h0 ¼ hf) and

originates at x → −∞. In both cases, h0 > 0, and the phase
of the incident wave moves in the þx direction. We use
εb ¼ 1 and

ffiffiffiffi
εs

p ¼ 1.4. The scattering properties of such a
particle in free space are included in Ref. [11].
Scattering creates guided waves that carry power from

the particle. We label them according to Fig. 1(b), where the
subscripts include the wave type (backward or forward) and
the direction (�x) of the power flow. In addition to the
guided waves, there is scattered bulk radiation with power
Ps that goes to y → �∞. The guided modes with anti-
symmetric distribution of Hz are not excited since they are
limited to ω=ωp < 1=

ffiffiffi
2

p
≈ 0.71.

We first calculate the electromagnetic fields and then
find the force. We rely on the approach described in
Ref. [11]. It is based on representing the fields outside
of the particle as created by some effective surface current.
The knowledge of the Green’s function for the slab allows
one to relate the currents to the fields near the particle.
Matching the fields outside to that inside allows one to find
the distribution of the effective current and the fields. The
fields determine the force. Similar techniques are often
used to solve diffraction problems [29–32].
To customize the approach of Ref. [11], whichwas applied

to a plasma half-space, to the geometry of Fig. 1(a), we
need to replace the reflection coefficient from the plasma
half-space (Eq. (19) of Ref. [11]) with that from the plasma
slab in the integral representation of the Green’s function.
The required reflection coefficient for a plane wave specified
by the x component h of the wave vector is
rðhÞ¼2iABeiϕp sinϕp=ðDsDaÞ, withDs;a¼B∓Aeiϕp , A¼
gp=εp−gb=εb, B¼gp=εpþgb=εb, gp;b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εp;bω

2=c2−h2
q

,

ϕp ¼ gpL. Thepoles ofDs;a correspond to the symmetric and
antisymmetric modes.
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FIG. 1 (color online). (a) Realization of a pulling force:
scattering of a guided backward wave creates a force on the
particle that is opposite to the power flow of the initial wave.
(b) Illustration of the two cases A and B studied.
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FIG. 2 (color online). Dispersion properties of mode (1) for
Lωp=c ¼ 0.1, 0.2, 0.3 (labeled next to the curves). (a) Wave
number and (b) group velocity as functions of frequency. The
dots show the operating points used in the simulations.
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The numerical results were verified using two tests. The
first test checked the balance of powers between the
scattered waves (guided and bulk waves) and the initial
wave. The second test checked the value of the force
calculated using the Lorentz formula [see Eqs. (28) and
(29) in Ref. [11]] and the difference in the momentum flows
before and after scattering. In the studied range of kR
(k ¼ ω=c), the relative error did not exceed 2 × 10−8 in the
power balance and 2 × 10−7 in the momentum balance.
Let us now analyze case A, i.e., the scattering of the

backward wave. The powers Pb−, Pfþ, Ps and the force Fx
as functions of kR for kd ¼ 1.2 are shown in Fig. 3. An
increase of kR results in a reduction of the transmitted
backward wave. The transmission shows resonant features
related to the excitation of WGMs. The scattered power is
mostly split between the guided waves Pb−, Pfþ and bulk
waves Ps. The bulk radiation in the upper half-space
exceeds that in the lower half-space. The powers Pbþ
and Pf− are not shown because their values do not exceed
10−3 × P0. The creation of the forward wave propagating
in the þx direction corresponds to the reflection of the
incident power and is consistent with the direction of wave
circulation inside the resonator. The reflection is quite
unusual since it does not occur in typical situations in
which the suppression of transmission is accompanied by
an increase in scattering only [11,32].
The force shown in Fig. 3(c) consists of a background

and a set of large resonant peaks. The background level
grows with kR and reaches cFx=P0 ≈ 0.2 for kR≳ 10. The
peak positions correlate well with the transmission and

scattering resonances. The magnitude of the peaks signifi-
cantly exceeds (up to 4 times at kR ≈ 30) the background
level. It is remarkable that Fx > 0 in the whole range of
0 < kR < 30. This means that the force is directed opposite
to the power flow of the incident backward surface wave.
We now turn to case B, i.e., the scattering of the forward

wave. The scattered powers and force are shown in Fig. 4
for the same kd ¼ 1.2 as for Fig. 3. Increasing kR reduces
the transmitted Pfþ and gives rise to the reflected backward
wave Pb−. The resonant dips in the reflection correlate
with the peaks of the bulk radiation Ps. The force has a
background (that can be negative) and large peaks. The
peaks correspond to the propelling force in the direction
of the incident power, in contrast to case A where the
resonances give a pulling force.
To interpret the forces, we apply the concept of momen-

tum flow to surface waves. The force produced within an
arbitrary volume V is F ¼ R

dsM, where the momentum
flow density (for real fields) is

4πMðnÞ ¼ εðE · nÞEþ μðH · nÞH

−
1

2
ðεE2 þ μH2Þn;

where n is the normal to the surface surrounding V. We
note that MðnÞ is independent of the propagation direc-
tion. Assuming that a surface wave carries power in the þx
direction, the momentum flow that it creates entering V can
be evaluated at the left boundary, see inset in Fig. 5:
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FIG. 3 (color online). Case A: Scattering of a backward wave.
(a),(b) Powers of the modes and (c) force on the particle.
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Mx ¼ x ·
Z

dsMð−xÞ ¼ 1

4π

Z
dyεðjEyj2 − jExj2Þþ jHzj2;

where x is the unit vector in the þx direction. This
expression for Mx holds both without [33] and with [34]
material dispersion. The momentum flowMx is equal to the
force Fx it would create if the energy is absorbed.
Figure 5 shows the dependence of power Px and

momentum flow Mx on the wave number h for mode
(1) at Lωp=c ¼ 0.2 and a fixed H0. The point h ¼ h� > 0
corresponds to the zero group velocity; see Fig. 2. The
condition Px > 0 holds on two intervals. The first interval
(h < h�) hasMx > 0 and corresponds to the forward wave.
The second interval (h < −h�) has Mx < 0 and corre-
sponds to the backward wave. Thus, the entrance of the
backward wave into V gives a negative momentum flow.
We therefore can define the momentum flow for the surface
wave that carries power P0 in the þx direction:

Mx ¼ ðh=ωÞP0. (2)

In Eq. (2), h > 0 corresponds to the forward wave while
h < 0 corresponds to the backward wave. Although
expression (2) was used before [33,34], its validity and
consequences for backward waves were not discussed.
The force acting on the particle can be written as the

difference between the momentum flow entering (input)
Me

x and leaving (output) Mo
x the interaction volume:

Fx ¼ Mi
x −Mo

x; (3)

where Mo
x includes the contributions from all excited

guided and bulk waves. In case A, using Eq. (2) we obtain

Mi
x ¼

hb
ω
P0 > 0; (4a)

Mo
x ¼

hb
ω
ðPb− − PbþÞ þ

hf
ω
ðPfþ − Pf−Þ þMsx; (4b)

where Msx describes the momentum flow of bulk waves;
see Eq. (36) in Ref. [11]. Note that Mi

x > 0 since the
incident backward wave propagates in the −x direction. We
obtained that Fx calculated using the Lorentz formula
agrees numerically with that using Eqs. (3) and (4). This
means that the slab does not experience any x-directed
force that may appear in some other situations [35]. Since
Msx is rather small (despite large Ps, see Ref. [11]), Fx can
be estimated by using only Pb− and Pfþ. The positive
background force in Fig. 3(c) can be explained by a
nonresonant reflection. The maximum force obtained is
cFx=P0 ≈ 1, which is comparable to the momentum flow
of the incident backward wave cMx=P0 ¼ 1.644. The
difference is explained by the reflected Pfþ. At WGM
resonances, the reflected signal is actually reduced while
bulk scattering and force are enhanced. The agreement
between the force calculated using the Lorentz formula and
that using the momentum difference was also checked for
case B. The negative background in Fig. 4(c) can also be
explained by the nonresonant power reflection into the
backward wave and its large (hb > hf) wave number.
Let us briefly study the transverse force on the particle in

cases A and B; see Fig. 6. The force remains negative
(attractive) in the range 0 < kR < 30 despite the presence
of sharp peaks at resonances. The transverse force is not
directly related to the incident momentum flow and may
reach values higher than the longitudinal force. This may
also be related to the particular choice of the waveguide.
The attractive force may cause the particle to approach
the waveguide and hit it. In practice, the pulling may not be
a steady process but rather a series of events where the
particle velocity changes rapidly. The changes can be
recorded as in Ref. [10]. The pulling can also be observed
by bringing the particle with optical tweezers to the
waveguide and then releasing it.
To conclude, the force on a particle supporting WGMs

excited by the surface waves of a plasma slab is inves-
tigated. It is shown that a backward wave can create a large
resonant optical force directed opposite to the incident
power. The pulling of the particle towards the energy
source is shown to be consistent with the fact that the
backward wave has its momentum flow opposite to the
power flow. Although the negative momentum flow helps
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to create a pulling force, the actual value of the force
depends on the distribution of the scattered power between
all modes. Other backward-wave structures (for example,
with periodic gratings [36] or dielectric filling [22,23]) are
also expected to create the pulling effect. Similar to the
dispersion in a plasma slab, a backward wave in structures
with dielectric rods [22,23] is always accompanied by a
forward wave with the same frequency but a different wave
number.
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