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We study the collective response of a dense atomic sample to light essentially exactly using classical-
electrodynamics simulations. In a homogeneously broadened atomic sample there is no overt Lorentz-
Lorenz local field shift of the resonance, nor a collective Lamb shift. However, the addition of
inhomogeneous broadening restores the usual mean-field phenomenology.
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Textbook arguments [1,2] tell us that in a dielectric
medium the local electric field El seen by an atom
(molecule) is different from the macroscopic electric field
E by an amount proportional to the polarization P of the
medium, El ¼ Eþ P=3ϵ0. This is the origin of the local-
field corrections in electrodynamics embodied in the
Clausius-Mossotti and Lorentz-Lorenz relations. As a
result, the frequency dependence of the microscopic polar-
izability and the macroscopic susceptibility are different. If
the polarizability has a Lorentzian line shape then so does
the susceptibility, but the resonance is shifted by what is
known as the Lorentz-Lorenz (LL) shift [3]. The LL shift
serves as the generic frequency scale for other density
dependent phenomena in an atomic sample such as colli-
sional self-broadening of absorption lines [4,5] and col-
lective Lamb shift (CLS) [6–10].
Local-field corrections are a standard workhorse in solid

and liquid media. On the other hand, in a resonant atomic
gas a density conducive to LL shift and CLS results in an
optically thick sample, which might explain the sparsity of
laser spectroscopy era experiments. There are careful
experiments on related phenomenology that agree with
the respective theory [8,9,11–13], but except for the
nuclear-physics experiment of Ref. [9] the published
experiments we know of deal with inhomogeneously
broadened samples with a substantial line broadening
due to the motion of the atoms. Atomic-physics experi-
ments with cold and dense clouds such as those in Ref. [14]
are presently underway [15]. Optically thick samples are
needed for a good quantum interface between photons and
matter [16], so that local-field effects, and, more generally,
cooperative response of matter to light, are likely to become
issues in the quest toward quantum technologies.
Here we study the cooperative response of a dense

atomic sample to light in the limit of low excitation
essentially exactly [17] using classical-electrodynamics
simulations [18–25] in a slab geometry analogously to
theory [6] and experiments [8] on CLS. In these simulations
with an unprecedentedly large scale, we have discovered
that a homogeneously broadened sample with fixed atomic

positions in fact does not exhibit the expected Lorentz-
Lorenz or collective Lamb shifts. However, when we add
inhomogeneous broadening [24] to the atomic samples, the
traditional phenomenology of local-field corrections
together with density-dependent collective effects ree-
merges. Basically, in a homogeneously broadened sample
the correlations between nearby atoms established by the
dipole-dipole interactions are important, while inhomo-
geneous broadening suppresses the correlations and makes
the sample behave more like a continuous polarization.
Let us first look at the logical status of the LL shift and

CLS as in Ref. [6] from the standpoint of our earlier
analysis of the coupled theory for light and matter [17,26].
Atomic polarization acts as a source of scattered dipole
radiation. Scattered light then induces correlations between
the atoms. In particular, for a J ¼ 0 → J0 ¼ 1 atomic
transition the response of the medium is isotropic, and
in the limit of low light intensity the equation of motion for
the polarization reads

P
: ðr1Þ ¼ ðiΔ − γÞPðr1Þ þ iζρðr1ÞE0ðr1Þ

þ iζ
Z

d3r2Gðr1 − r2ÞP2ðr1; r2Þ: (1)

Here ρ is the density, and, P2ðr1; r2Þ represents a corre-
lation function with polarization at r2, given a ground-state
atom density at r1. We consider a near-monochromatic
response, such that P and P2 correspond to positive-
frequency parts of quantities oscillating at the “laser
frequency” ω. Δ ¼ ω − ω0 is the detuning from the atomic
resonance ω0, γ is the HWHM linewidth of the transition,
ζ ¼ D2=ℏ, D is the dipole moment matrix element, and
ϵ0E0 would be the electric displacement of the driving light
if the matter were absent.G is the dipole field propagator, a
3 × 3 matrix such that Gðr − r0Þd is the usual [1] electric
field at r from a dipole d at r0.
Owing to light-mediated dipole-dipole interactions, the

polarization obtained from Eq. (1) depends on the two-
atom correlation function P2ðr1; r2Þ. Similarly, P2 is
coupled to three-atom correlation functions, which are
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coupled to four-atom correlations, etc., and we obtain a
hierarchy of equations of motion for the correlation
functions [17,26,27].
Suppose, nevertheless, that we factorize P2ðr1; r2Þ in

Eq. (1) as P2ðr1; r2Þ ¼ ρðr1ÞPðr2Þ. This assumption says
that there are no correlations between the positions and
dipole moments of the atoms, in violation of the fact that
the dipole-dipole interactions depend on the positions. We
then obtain a closed mean-field equation for atom density
and polarization. In the mean-field approximation polari-
zation is taken to be a continuous field. As this approach no
longer retains the information about the precise positions of
the atoms, correlations induced by scattered photons
between nearby atoms that depend on the spatial distribu-
tion of the atoms are generally also lost. The mean-field
theory model reproduces the standard electrodynamics of a
continuous polarizable medium [2]. The integral in Eq. (1)
is not absolutely convergent. As has been discussed before
[2,6,17], one in effect carries it out as if Gðr − r0Þ were not
singular, and adds to G an extra diagonal term
δðr − r0Þ=3ϵ0 to account for the singularity. This is where
the local-field corrections and the LL shift enter.
For a slab configuration, a uniform-density medium

restricted to the interval z ∈ ½0; h� and a plane wave with
the wave number k ¼ ω=c propagating in the z direction,
the stationary solution to Eq. (1), together with
P2ðr1; r2Þ ¼ ρðr1ÞPðr2Þ, may be found exactly, including
the field transmitted through the slab. In the limit of
asymptotically small density ρ of the medium, the absorp-
tion line is Lorentzian and is shifted by

ΔL ¼ΔLL−3

4
ΔLL

�
1− sin2hk

2hk

�
; ΔLL ¼− ρD2

3ϵ0ℏ
(2)

from the atomic resonance. Here ΔLL, a redshift, is the
standard LL shift, and ΔL is the CLS as in Ref. [6]. In the
present formulation the CLS is a combination of the LL
shift and the etalon effect because of the reflections of light
from the front and back surfaces of the sample. This is the
CLS verified in the experiments [8,28].
It is obvious from Ref. [6] that the derivation of the CLS

ΔL also came down to what we term mean-field theory, and
the same applies to many other analyses such as in Ref. [7].
This approximation ignores the correlations between
nearby atoms that might arise from dipole-dipole inter-
actions, and as such is uncontrolled. This is why we will
solve the light propagation problem using stochastic
classical-electrodynamics simulations [18–25]. As demon-
strated in Ref. [18], in this manner we solve the entire
hierarchy of equations for the atomic correlation functions
exactly, except for statistical fluctuations.
We characterize the incident monochromatic field driv-

ing the atomic dipoles with the complex amplitude E0ðrÞ
and likewise all other quantities oscillating at the frequency
ω. We have the N atoms fixed at positions ri, i ¼ 1;…; N,

each with an assumedly isotropic polarizability α. In
addition to the incident field, each atom i at position ri
is illuminated by scattered radiation from all the N − 1

other atoms, EðjÞ
S ðrÞ (j ≠ i), so that the total external field

driving the atom is EðriÞ ¼ E0ðriÞ þ
P

j≠iE
ðjÞ
S ðriÞ. This

induces the dipole moment di ≡ dðriÞ ¼ αEðriÞ, which
will in its turn emit the electric field EðiÞ

S ðrÞ ¼
Gðr − riÞ½αEðriÞ�. We find a closed set of linear equations
for the amplitudes EðriÞ,

EðriÞ ¼ E0ðriÞ þ α
X
j≠i

Gðri − rjÞEðrjÞ: (3)

Having solved it numerically, we have the electric field
amplitude everywhere in the form

EðrÞ ¼ E0ðrÞ þ α
X
i

Gðr − riÞEðriÞ: (4)

The polarizability of the quintessential two-level atom is
α ¼ −D2=½ℏðΔþ iγÞ�, with γ ¼ D2k3=6πℏϵ0. A two-level
atom has a preferred direction for polarization, but with our
tacit assumption that we are dealing with the J¼0→J0 ¼1
transition, the dipole of an atom and the polarization of the
driving light are actually parallel. There will be adjustments
for other level schemes even in the limit of low light
intensity, let alone when optical pumping is a factor, but we
do not go into the details. The LL shift turns out to be
ΔLL ¼ −2πγρk−3. The abundance of powers of the wave
number k in our formulas reflects the fact that the natural
unit of length for optical response is k−1.
In our numerical experiments we study a circular disk

with radius R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
256=π

p
k−1, so that the area is

A ¼ 256k−2. We vary the thickness of the disk h but keep
the density ρ ¼ N=hA ¼ 2k3 constant in our examples, so
the number of atoms N varies accordingly. We have done
simulations at other densities, too, and believe that the
phenomenology we have found is generic to dense
(ρk−3 ≳ 1) samples. A circularly polarized plane wave
comes in perpendicular to the face of the disk.
Analogous numerical experiments, although for different
purposes, have been described in Refs. [21,22]. In this
context absorption means destructive interference of the
incoming light and the light radiated by the atoms of the
disk in the forward direction. We denote the fractional
reduction of the energy density of light by 1 − T, where T is
the coefficient of transmission. We adapt the method to
calculate the absorption coefficient from Ref. [21].
Occasionally, we also compute the backscattered power
by integrating the radial component of the Poynting vector
of the scattered radiation over a large-radius hemisphere
that covers the disk on the side of the incoming light. Even
if local-field effects are a major theme here, we always
analyze observable quantities outside of the sample and
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thus avoid the question of the operational meaning of the
fields inside the sample.
The overall protocol is that we generate a number of

random samples, from 64 to millions, of atomic positions
evenly distributed inside the disk, compute the absorption
as a function of the detuning Δ for each sample, and
average the results. At times we also compute the depend-
ence of backscattered power on frequency. By energy
conservation, for an infinite radius of the disk the line
shapes in absorption and backscattering should be the
same. A comparison strongly suggests that our observa-
tions are not an artifact of the rather small radius of the disk.
We express the final results in terms of optical thickness
(depth, density)D defined asD ¼ − lnT. The advantage is
that in a medium that obeys Beer’s law the line shape of
optical thickness D would be independent of the thickness
h of the sample.
The numerical experiments are similar to the real experi-

ments of Keaveney et al. [8], with the significant exception
that they had thermal samples at temperatures substantially
higher than room temperature while our atoms are standing
still. Our simulations also differ from the experiments in
that the densities are lower. This is because the computer
time for a simulation grows as the cube of the atom number,
and our runs add up to ∼105 h of CPU time as is.
Figure 1 shows the optical thickness D as a function of

detuning Δ for the sample thicknesses hk ¼ 0.25, 0.5, 1.0
and 2.0, with the corresponding atom numbers N ¼ 128,
256, 512, and 1024. For comparison we also give the
predicted LL shift for this atom density as the dashed
vertical line. The absorption lines are not Lorentzian. While
the line broadens with increasing atom number and may be
noticeably asymmetric, the maximum moves very little.
The shift, if any, is at most a few percent of the LL shift.
There is no manifest LL shift, nor a CLS.

The traditional density dependent shifts are predicted
from mean-field theory that ignores the correlations
between the dipoles. Here all correlations are included,
and there is no mystery to the observation that our results
differ from the established predictions. This, however,
leaves the question of why experiments [8] that by
definition include all orders of dipole-dipole correlations
agree with theoretical arguments [6] that do not. Our next
goal, therefore, is to demonstrate that under proper con-
ditions our simulations can also produce usual mean-field
results.
In real experiments with gaseous media the environment

of a radiating atom is complex. The atom moves, there are
atom-atom collisions, and the atoms collide with the walls
of the container. Overall, the electric field that each atom
sees changes as a function of time because both the
spectator atom and the other atoms move. In the zeroth
order picture of laser spectroscopy all of this is represented
by inhomogeneous broadening: In the laboratory frame the
resonance frequency of an atom depends on its velocity
because of the Doppler shift, and, accordingly, the reso-
nance frequencies of the atoms are simply regarded as
random quantities. Here we adopt this generic model.
We repeat the numerical experiments with the atoms in

the circular disk, except that this time we assume that the
resonance frequency of each atom is also shifted by a
Gaussian random variable with zero mean and the rms
value ωD ¼ 100γ. This value would be a reasonable
estimate for the D lines in a room-temperature alkali vapor.
An example spectrum is shown in Fig. 2, left panel. The
line shape has the appearance common in the spectroscopy
of inhomogeneously broadened samples. Accordingly, we
fit it with the Voigt profile VðΔ;Γ;ΩDÞ, convolution of a
Lorentzian with the HWHM width Γ and a Gaussian with
the rms width ΩD. More precisely, the fit function is
MVðΔ − s;Γ;ΩDÞ, where the fit parameters are the overall
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FIG. 1 (color online). Optical depth D versus detuning Δ in a
homogeneously broadened sample for sample thicknesses
hk ¼ 0.25, 0.5, 1.0, and 2.0, from bottom to top; the correspond-
ing atom numbers are N ¼ 128, 256, 512, and 1024. The dashed
vertical line shows where the center of the line would be if the
naive Lorentz-Lorenz shift applied.
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FIG. 2 (color online). Left: Optical depth of the sample D with
thickness hk ¼ 1.5, and, hence, N ¼ 768 atoms, as a function of
the detuning for a sample with the inhomogeneous linewidth
ωD ¼ 100γ. This numerical experiment (solid red line) is an
average of 1024 samples, the fit with a Voigt profile (dashed
black line) has the parameters s ¼ 2.15γ, Γ ¼ 17.74γ, and
ΩD ¼ 112.83γ. Right: The shift of the absorption line s plotted
as a function of the thickness of the sample h as solid circles. The
statistical error bars are smaller than the size of the circles. Also
shown as a solid line is the collective Lamb shift, Eq. (2), and as a
dashed line a vertically translated version of Eq. (2) fitted to the
numerical data points with hk ≥ 1.
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scale M, the shift of the resonance s, the linewidth Γ, and
the inhomogeneous broadening ΩD. The quality of the fit is
very good.
We plot the shift of the resonance s as a function of the

thickness of the disk h in Fig. 2, right panel, as filled circles.
The shift is a small fraction of the total width of the
spectrum but it is highly reproducible; the statistical 1σ
error bars fit inside the circles. The shift tends to zero at
small thicknesses. In this limit the physics becomes two
dimensional, for a fixed three-dimensional density the
relevant two-dimensional area density tends to zero, and
eventually the atoms must radiate completely independ-
ently. We also plot the CLS, Eq. (2), as a solid line.
Numerical data and theory show similar oscillations, albeit
differing approximately by an additive constant. The
transition from two-to-three dimensional behavior compli-
cates the comparison, but in Fig. 2 we also plot as a dashed
line the vertically translated version of the theory to fit the
numerical data points with hk ≥ 1. There was an additive
term fitted to the experiments [8], too, before they gave an
agreement with Eq. (2). The agreement of our numerical
experiments with the theory is on a similar footing as in the
real experiments.
For the J ¼ 0 → J0 ¼ 1 transition the self-broadening of

the atomic line due to the dipole-dipole interactions, part
of the collisional interactions between the atoms that
adds to the natural linewidth, is predicted to be γ0 ≃
2π

ffiffiffi
3

p
ρk−3γ ≃ 22γ [4]. Optical experiments in dense sam-

ples [5,8,11] have shown good agreement with theory [4].
Our fitted value Γ varies somewhat with the thickness of the
sample, but is in the neighborhood of Γ ∼ 17γ. The semi-
quantitative agreement with collision theory is intriguing,
but our atoms do not collide at all. More likely, the effective
linewidth Γ arises from the linewidths of the cooperative
radiation modes [23,29] in the sample.
The inhomogeneous broadening apparently emphasizes

mean-field physics at the expense of correlations between
adjacent atoms. To demonstrate how it works, we sketch a
formal solution to the analog of Eqs. (3) for two atoms 1
and 2 with different resonance frequencies, hence, different
polarizabilities α1 and α2. Averaging over the correspond-
ing atomic positions would then, in principle, allow
calculation of the transmitted light through this idealized
two-atom “sample”, analogously to our numerical studies.
Evaluating the field on, say, atom 2 that is generated by the
incident field and the light scattered from atom 1 yields

Eðr2Þ ¼ ð1 − α1α2GGÞ−1½E0ðr2Þ þ α1GE0ðr1Þ�
¼ E0ðr2Þ þ α1GE0ðr1Þ þ α1α2GGE0ðr2Þ þ…. (5)

The second line shows the beginning of the expansion
of the inverse of the operator (1 − α1α2GG), with
G≡Gðr1 − r2Þ ¼ Gðr2 − r1Þ. The first term is the free
field on atom 2; in the second term the free field excites
atom 1, which sends its dipolar field back on atom 2; in the

third term the free field excites atom 2, which sends a
dipolar field to excite atom 1, which sends a dipolar field
back on atom 2. Further terms in the expansion come out
the same way reflecting repeated photon exchanges
between the atoms. Such recurrent scattering processes
in which (here) a classical wave scatters more than once by
the same atom are responsible for the cooperative phenom-
ena and the emergence of subradiant and superradiant
resonances [17,22,23].
Let us now regard atom 2 as the spectator and imagine

averaging over the position of atom 1. This operation faces
major mathematical obstacles because of the divergence of
Gðr1 − r2Þ, but we do not attempt to sort them out because
these problems are evidently similar for homogeneously
and inhomogeneously broadened samples. Upon averag-
ing, the second term becomes the mean-field contribution
radiated by an assumedly continuous polarization, and
further terms represent repeated photon exchanges between
the atoms. Next, add the inhomogeneous broadening ωD.
To the order of magnitude, averaging over the resonant
frequencies suppresses the polarizability by a factor of
γ=ωD. Thus, the first nontrivial term in the expansion
corresponding to the mean-field polarization gets sup-
pressed by this small factor, and the higher terms by higher
powers of the small quantity γ=ωD. Qualitatively, repeated
photon exchanges are deemphasized because in such
processes both the emitter and the absorber are off
resonance.
Analogously, one would expect that in a many-atom

sample the transition from homogeneously broadened to
inhomogeneously broadened phenomenology takes place
when the inhomogeneous broadening ωD and the effective
linewidth Γ are comparable. This is, in fact, what we
observe in the numerical experiments.
We have performed trial runs with dilute homogeneously

broadened samples when one does not expect strong light-
induced correlation between the atoms. The ensuing
phenomenology is similar to that in Fig. 2, right panel,
including the oscillations attributed to CLS. There is again
a constant shift from the mean-field prediction of Eq. (2),
and (in units of the LL shift) the shift is different from the
one seen in Fig. 2. In fact, at low density the LL correction
and the leading beyond mean field contribution to suscep-
tibility due to cooperative interactions are both of the order
ρ2 [30–32], and multiple scattering may cause a line shift
comparable to the LL shift even in a dilute sample.
Why mean-field theory worked for the Mössbauer

experiment [9] even though the sample was dense and
homogeneously broadened is also easy to understand
qualitatively. There the nuclei were effectively in a cavity
that directed the radiation repeatedly back on the nuclei.
This clearly deemphasizes correlations between nearby
radiators in favor of the mean field.
The presence or absence of line shifts were also reported

experimentally under the conditions of Rydberg blockade

PRL 112, 113603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

113603-4



depending on inhomogeneous broadening [33,34]. The
difference could conceivably be mean-field versus co-
operative behavior analogous to the one we have described.
From classical-electrodynamics simulations, we have

found qualitative features in the optical response of a
homogeneously broadened (ultralow-temperature) dense
atomic sample that are at variance with the time-honored
pictures of local-field corrections and collective Lamb
shifts. However, an inhomogeneous broadening (random
distribution of atomic resonance frequencies) restores the
agreement with the traditional theory. It turns out that the
established picture is a mean-field approximation that
breaks down when dipole-dipole interactions set up corre-
lations between the radiators. Inhomogeneous broadening
or a cavity that collects the radiation and redirects it back on
the radiators both deemphasize the correlations, and nudge
the physics toward the mean-field theory. These observa-
tions are likely to be relevant when the experiments move
toward dense low-temperature samples, for instance, to
improve the quantum nature of the atom-field coupling for
the benefit of quantum metrology or possibly quantum
information processing.
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