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We measure high resolution photoelectron angular distributions (PADs) for above-threshold ionization
of xenon atoms in infrared laser fields. Based on the Ammosov-Delone-Krainov theory, we develop an
intuitive quantum-trajectory Monte Carlo model encoded with Feynman’s path-integral approach, in which
the Coulomb effect on electron trajectories and interference patterns are fully considered. We achieve a
good agreement with the measured PADs of atoms for above-threshold ionization. The quantum-trajectory
Monte Carlo theory sheds light on the role of ionic potential on PADs along the longitudinal and transverse
direction with respect to the laser polarization, allowing us to unravel the classical coordinates (i.e.,
tunneling phase and initial momentum) at the tunnel exit for all of the photoelectrons of the PADs. We
study the classical-quantum correspondence and build a bridge between the above-threshold ionization and
the tunneling theory.
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As a benchmark experiment, the observation of above-
threshold ionization (ATI) has significantly motivated the
progress of strong-field physics [1]. ATI can be usually
understood within the scenario of multiphoton absorption
through resonant states (so-called Freeman resonance [2])
or nonresonant states. Alternatively, increasing the laser
intensity, the potential barrier of an atom is suppressed
drastically and electrons can easily tunnel out. Usually,
multiphoton ionization and tunneling ionization are dis-
tinguished by the Keldysh parameter γ [3] [γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ip=2Up
p

,
where Ip is the ionization potential, Up the ponderomotive
potential (Up ¼ E2

0=4ω
2), E0 the field amplitude, ω the

field frequency, and atomic units are used throughout
unless otherwise specified]. Tunneling ionization will
dominate if γ < 1, while multiphoton ionization prevails
when γ > 1. A thorough understanding of atomic ioniza-
tion in strong fields is essential for further explorations and
diverse applications.
The intuitive understanding of strong-field ionization

arises mainly from Simpleman’s picture [4], in which the
tunneled electrons oscillate classically in the laser field
after ionization. This model, although successful in provid-
ing many useful qualitative predictions, has not been able to
provide a quantitative fit with the experimental data due to
the shortcoming in handling the Coulomb potential of the
parent ion and quantum effect. Usually, the ionic potential
is ignored in the framework of the strong-field approxi-
mation (for a review, see [5]). Recently, the classical-
trajectory Monte Carlo simulation (CTMC) [6] and
Coulomb-corrected strong-field approximation [7,8] mod-
els can provide more quantitative description of strong-field
ionization. More accurately, one can reproduce the resonant

features present in ATI spectra with astonishing precision
by solving the time-dependent Schrödinger equation for
model atomic potentials [9]. However, because the quan-
tum simulation is not physically transparent, no simple
picture can be drawn for the mechanism leading to ATI.
Strong-field ionization is also usually described with the

Ammosov-Delone-Krainov (ADK) theory, in which the
ionization rate, the tunnel exit, and the momentum dis-
tribution are prescribed [10,11]. In this Letter, we develop
an intuitive quantum-trajectory Monte Carlo (QTMC)
model for strong-field ionization combining the ADK
theory with Feynman’s path-integral approach [12]. The
use of path integrals for quantizing classically mechanical
systems can be traced back to Dirac’s idea [13,14]. The
path-integral approach has been employed for intense-
laser-atom interaction [15], where the Coulomb potential
was completely ignored. Our QTMC model fully includes
both the Coulomb potential and quantum interference effect
after the tunneling. The QTMC model further allows us to
reproduce the photoelectron angular distributions (PADs)
of ATI and to achieve deep understanding of the exper-
imental results in terms of classical trajectories of the
tunneled electrons in conjunction with the “quantum”
treatment. We show that the Coulomb potential manifests
its importance in both the trajectory and phase of the
tunneled electrons, which has a significant effect on PADs
along both the longitudinal and transverse directions with
respect to the laser polarization.
Experimentally, using cold-target recoil-ion reaction

momentum spectroscopy (COLTRIMS) [16], we have
measured two-dimensional PADs of multiphoton ionization
of rare gases by a Ti:sapphire laser. The typical measured
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PAD of Xe is shown in Fig. 1(b) at the intensity of 0.75 ×
1014 W=cm2 (795 nm, 25 fs), which is dominated by a
series of concentric rings centered at zero, corresponding to
the characteristic ATI peaks.
To shed a direct light on the PAD of ATI, we perform the

calculations with the QTMC model. Briefly, we sample
the initial coordinates of all of the tunneled electrons at the
tunnel exit using the ADK theory. The tunnel exit is derived
from the Laudau’s effective potential theory [17]. As
illustrated in Fig. 1(a), after tunneling, the electron motion
in the combined laser and Coulomb fields is governed by
the Newtonian equations, ̈ r ¼ −r=r3 −EðtÞ, where r is the
distance between electron and nucleus. In the QTMC
model, we have included the phase for each electron with
e−iS (S is the classical action after tunneling). Including the
Coulomb effect, the classical action after the tunnel exit
is given by S ¼ R

∞
t0
½vðtÞ2=2 − 1=jrðtÞj þ Ip�dt, where t0 is

the instant of tunneling, vðtÞ is the electron velocity, and Ip
is the ionization potential. The phase is contributed by three
terms, i.e., the trajectory phase related with the motion in
the laser field ΦL ¼ R∞

t0
vðtÞ2=2dt, the constant phase

related with the ionization potentialΦI ¼ R∞
t0
Ipdt, and

the Coulomb-corrected phase ΦC ¼ R
∞
t0

−1=jrðtÞjdt.
Note that the classical action S is integrated with time
together with the Newtonian equations, and thus the
Coulomb effect is fully considered in the QTMC model.
The comparison of the Simpleman, CTMC, and QTMC
models is described in [18].
The simulated two-dimensional PAD of multiphoton

ionization from Xe at 0.75 × 1014 W=cm2 [Fig. 1(d)]
agrees well with the experiment. We further show the
calculated PADs of Xe at 0.5 × 1014 W=cm2 in Fig. 1(c).

One can find that the dominant angular momentum of the
first-order ATI is L ¼ 4. At 0.75 × 1014 W=cm2, the
dominant angular momentum of the first-order ATI is
L ¼ 5. The multiphoton channel-switching effect can be
reproduced [19,20].
The Coulomb potential is very important in the strong-

field atomic ionization. However, this effect cannot be
directly unraveled by the quantum simulation. As seen in
the QTMC model, the Coulomb effect plays essential roles
in the two aspects: (i) the electron motion in the Newtonian
equations and (ii) the phase and trajectory in the phase
equation. We can separate the Coulomb effect in both the
Newtonian and phase equations using the QTMC model.
We first show the calculated PAD within the Simpleman
model in Fig. 2(a). Compared to the PAD calculated by the
CTMC model in Fig. 2(b), it is distorted by the strong
scattering in the presence of the Coulomb potential.
However, the results of both the Simpleman and CTMC
models deviate very much from the experimental meas-
urement if the interference effect is not included.
When the Coulomb effect is not included in both the

Newtonian equations and the phase equation after tunnel-
ing in the QTMC model, the characteristic ATI rings will
appear [Fig. 2(c)]. The simulated PAD by the QTMCmodel
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FIG. 1 (color online). (a) Illustration of the QTMCmodel. After
the tunneling, electrons could follow different paths, i.e., path A
and path B, have the same final momenta on the detector, and will
interfere with each other. (b) The experimental PAD of Xe at
0.75 × 1014 W=cm2. (c) and (d) show the simulated PADs of Xe
at 0.5 × 1014 and 0.75 × 1014 W=cm2, respectively. Note that the
focus volume effect is not considered in the calculation.
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FIG. 2 (color online). (a) The simulated PAD of Xe without the
Coulomb potential in the Newtonian equation and without
solving the phase equation. (b) The simulated PAD of Xe with
the Coulomb effect in the Newtonian equation but without
solving the phase equation (CTMC model). (c) The simulated
PAD of Xe without consideration of the Coulomb effect in both
the Newtonian equation and phase equation. (d) The simulated
PAD of Xe with the Coulomb effect in the Newtonian equation
and without the Coulomb-corrected phase. Only the Newtonian
equations are solved in (a) (without the Coulomb potential) and
(b) (with the Coulomb potential). The Newtonian and phase
equations are solved simultaneously in (c) and (d). In (c), the
Coulomb potential is not considered in both equations. In (d), the
Coulomb potential is considered in both equations, but without
the term of the Coulomb-corrected phase.
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reveals the so-called “interference carpet” structure [21].
When the Coulomb potential is fully included, the relative
contribution of each ATI spot is redistributed and most of
events are shifted along the laser polarization direction
because of the Coulomb focusing effect [22], as seen in
Fig. 1(d). In order to achieve deep understanding on the
Coulomb effect on the PAD of ATI, we also calculated
the PADs with the inclusion of the Coulomb effect in the
Newtonian equations, but not included for the phase
equation in the QTMC model. As illustrated in Fig. 2(d),
interestingly, without the Coulomb-corrected phase in the
action, one can only observe the ATI along the longitudinal
direction (parallel to the laser polarization). This indicates
that the Coulomb-corrected phase plays an essential role
in the formation of ATI spots transverse to the laser
polarization, i.e., the interference carpet. To shed more light
on that, we must study the tunneling coordinates of ATI and
consider theCoulomb effect on both the trajectory and phase
of the tunneled electrons.
We have seen the importance of the Coulomb potential in

the formation of ATI. In the Feynman’s path integral
picture, the trajectories can contribute to the destructive
or constructive interference that depends on the classical
action along their paths. Now we investigate the classical
origin of ATI patterns by tracing back the initial coordinates
(tunneling phase and tunneling momentum) of electrons at
the tunnel exit.
Classically, there are two kinds of tunneled electrons,

i.e., direct electrons and rescattered electrons. In the
Simpleman model, the electron ionized before the peak
of the electric field within half an optical cycle will be
pulled away from the ion directly. The electron released
after the peak of the electric field will be driven back to the
parent ion. Direct electrons experience a small Coulomb
attraction immediately after the tunnel exit, while the
rescattered electrons will be further influenced by the
parent ion’s potential upon their subsequent returns. In
order to find the signatures of the Coulomb effect on
electron trajectories and quantum interference, we trace
back the initial coordinates of all of the tunneled electrons
in a half laser cycle that contribute to the final PAD with
different models.
Without consideration of the Coulomb effect on the

trajectory and phase, all of the tunneled electrons will
contribute to the final PAD, as seen in Fig. 3(a), where the
initial coordinates of tunneled electrons in a half laser cycle
are predicted by the ADK theory. Including the Coulomb
effect, not all of tunneled electrons will contribute to the
final PAD, as seen in Fig. 3(b). Compared with Fig. 3(a),
the Coulomb potential has three important effects on the
final PAD without considering the interference: (i) a
fraction of the tunneled electrons can be recaptured by
the ionic potential during electron recollision; (ii) some
tunneled electrons are scattered into high energy. The initial
transverse momentum distribution and the Coulomb effect

manifest their importance in both the recapture and back-
scattering process. As shown in Fig. 3(b), the missing area
A isduetothetrappingof tunneledelectronsbytheparent ions
and those electrons can be stabilized in the Rydberg states
[23,24]. Themissing electrons in the areaBwill contribute to
high energy electrons in the plateau because of strong
backward scattering [25]; and (iii) the time boundary of
direct electrons and rescattered electrons is shifted
ahead of the field maximum due to the Coulomb effect,
indicated by the white dashed line in Fig. 3(b) [26].
If the intercycle interference is considered, depending on

the initial tunneling coordinates, the tunneled electrons will
contribute to the constructive or destructive interference.
With the back analysis of PADs, we can identify the initial
tunneling coordinates of all of the tunneled electrons. If the
Coulomb effect is not considered, the initial momentum
distributions that contribute to the final ATI also reveal
rings, as shown in Fig. 3(c) (the corresponding ATI orders
are also marked). When the effects of the Coulomb
potential and interference are fully considered in the
QTMC model, the initial momentum distributions of
tunneled electrons that contribute to the final PADs are
strongly distorted [Fig. 3(d)]. The back analysis of initial
tunneling coordinates of tunneled electrons with consid-
eration of the long-range Coulomb potential provides more
sophisticated information.
In fact, both intracycle and intercycle interference will

come into effect [27]. Each order ATI is composed of
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FIG. 3 (color online). The initial phase space of tunneling
electrons, i.e., the tunneling probability of the initial transverse
momentum with respect to the tunneling phase from a half laser
cycle that contribute to the final PAD. (a) Without the Coulomb
potential in the Newtonian equation and without solving the
phase equation (Simplemam model), (b) with consideration of the
Coulomb potential in the Newtonian equation and without
solving the phase equation (CTMC model), (c) without consid-
eration of the Coulomb potential in both the Newtonian and phase
equation in the QTMC model, and (d) with consideration of the
Coulomb effect in both the Newtonian and phase equation in the
QTMC model.
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several spots, e.g., the destructive or constructive interfer-
ence patterns within each order of ATI. The dominant
angular momentum of the first ATI ring is determined by
both the Coulomb-corrected trajectory and Coulomb-
corrected action. Employing the advantage of the QTMC
model, we can further trace back the classical origin of each
ATI spot. As shown in Figs. 4(a)–4(c), the initial transverse
momentum and the tunneling phase for the tunneled
electrons for three spots with positive pz and pr of the
first-order ATI [P1 − P3 in Fig. 1(d)] are shown. Obviously,
there are two types of intracycle interference to form those
spots; (i) the interference between rescattered electrons
(marked with R1 and R2) in the same field direction, where
R1 and R2 represent the groups of tunneled electrons with
large positive and small negative initial transverse momen-
tum distributions, respectively; and (ii) the interference of
direct electrons (D1) with the rescattered electrons (R1 or
R2). If the Coulomb effect is not considered, only the
groups of R1 and D1 with the positive transverse momen-
tum contribute to the final interference patterns. In the
presence of the Coulomb field, another group of rescattered
electrons with small negative transverse momenta (R2) will
significantly contribute to the ATI because of its higher
ionization rate. The final momenta of the groups R1, R2,
andD1 of tunneled electrons are very similar and will show
the constructive or destructive interference patterns within

the ATI rings [18]. Indeed, all of the intercycle and
intracycle interference of direct electrons and rescattered
electrons from a long laser pulse contributes to the final
PADs. The higher order ATI is mainly contributed from the
interference among the rescattered electrons.
To reveal how the intracycle interferences take place, we

plot the action of tunneled electrons from the positive field
and negative field in a laser cycle with respect to the
emission angle in the range of 0°–90° for the first order
ATI in Figs. 4(d) and 4(e) (see [18] for more details). The
action difference ΔS of those groups of electrons can reflect
the constructive or destructive interference of the tunneled
electrons. Without including the Coulomb effect in both the
electron trajectory and phase, the normalized action of two
groups of electrons intersects near the angle of 0° and 75°
(where ΔS is 2nπ, n ¼ 0, 1, 2, …), i.e., ATI spots are
formed by the constructive interference between the R1 and
D1 group of electrons [Fig. 4(d)]. Figure 4(f) illustrates the
results with the inclusion of both the Coulomb-corrected
trajectory and the Coulomb-corrected phase in the range of
0°–90° for the first-order ATI. One can find that the spot P1

is dominantly formed by the constructive interference
between R1 and R2, P2 is mainly formed by R1 and D1,
and P3 contains contributions from all of them. Because the
group of electrons of R2 has smaller initial transverse
momenta, the Coulomb potential has much stronger influ-
ence on R2 than R1 and D1. The Coulomb-corrected phase
will evidently slow down the increase of the action of R2

with respect to the emission angle. Accordingly, the inter-
ference between R1 and R2 can give rise to more destructive
patterns within an ATI ring than that in the case of neglecting
the Coulomb-corrected phase [Fig. 2(d)], in which the action
difference between R1 and R2 is nearly independent on the
emission angle. The relative contribution of those trajecto-
ries will change when varying the laser intensity.
In summary, by encoding the path integral into the ADK

theory, we have developed an intuitive QTMC model and
have applied the model to explain the high-resolution PADs
of ATI. We show that the ionic potential has a significant
role on the PADs of ATI. The initial tunneling coordinates
of the PADs of ATI can be resolved by the QTMC model.
This model has established the classical correspondence of
the quantum dynamics. The underlying electron dynamics
of ATI patterns on a subcycle time scale can be described
using the QTMC model, which will enable the photo-
electron spectroscopy of strong-field ionization. The
QTMC model provides a bridge between the tunneling
theory and above-threshold ionization, and has a potential
to be extended for probing molecular dynamics by com-
bining with the MO ADK theory.
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FIG. 4 (color online). (a)–(c) show the initial transverse
momentum with respect to the tunneling phase of P1, P2, and
P3 of the first-order ATI in a laser cycle, respectively. The red
solid lines show the laser field. P1 − P3 represent the three ATI
spots in the first quadrant (pz > 0 and pr > 0) of Fig. 1(d). In (a),
R1 and R2 indicate the group of the rescattered electrons with a
larger and smaller transverse momentum, respectively. D1 in-
dicates the direct electrons. (d)–(e) show the electron action with
respect to the emission angle θ ¼ cos−1ðpz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2

r

p
Þ without

the Coulomb potential (d) and with the Coulomb potential (e) for
the first order ATI peaks in the quadrant I. Black (red) dots
show the electrons released at the first (second) half cycle of the
laser fields in (a)–(c). The trajectory weights are not included in
(d) and (e). In (d), there are only the groups of R1 and D1. In (e),
the blue solid line indicates the group of R2 electrons. The green
regions correspond to the three ATI spots of P1 − P3. The action
values are normalized into an interval of [0, 2π]. The simulation
parameters are the same as in Fig. 1(d).
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