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Laser induced strong-field phenomena in atoms and molecules on the femtosecond (fs) time scale have
been almost exclusively investigated with traveling wave fields. In almost all cases, approximation of the
strong electromagnetic field by an electric field purely oscillating in time suffices to describe experimental
observations. Spatially dependent electromagnetic fields, as they occur in a standing light wave, allow for
strong energy and momentum transfer and are expected to extend strong-field dynamics profoundly. Here
we report a strong-field version of the Kapitza-Dirac effect for neutral atoms where we scatter neutral He
atoms in an intense short pulse standing light wave with fs duration and intensities well in the strong-field
tunneling regime. We observe substantial longitudinal momentum transfer concomitant with an
unprecedented atomic photon scattering rate greater than 1016s−1.
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Strong-field phenomena in atoms and molecules induced
by an intense traveling wave laser field are successfully
described within the dipole approximation taking into
account only the time dependency of the electric field,
~Eð~r; tÞ ¼ ~EðtÞ, [1,2]. The magnetic field and spatial field
dependencies can usually be neglected due to the weak
effective Lorentz force and weak field gradients in the
focused laser beam. To fully explore atomic processes in
intense electromagnetic fields one might extend the inves-
tigations toward spatially dependent strong electromagnetic
fields as they occur, e.g., in a standing light wave. This
situation, in turn, is intimately connected to the Kapitza-
Dirac (KD) effect. The KD effect was originally formulated
for the reflection of electrons in a standing light wave [3]
and later also extended to neutral atoms [4]. Remarkably,
the KD effect in weak standing light waves has been
extensively explored in the context of atom optics and
manipulation of quantum gases, both theoretically and
experimentally [5–8]. The scattering of electrons in strong
standing light waves including the relativistic regime,
however, has been mainly tackled theoretically, [9–15],
in striking contrast to very few experimental studies
[16–18]. Two seminal experiments, using very moderate
laser intensities ≲1013 Wcm−2 and pulse durations on the
order of hundreds of picoseconds, have been reported on
Bragg scattering of free electrons [16,17] and on the
angular distribution of above threshold ionization electrons
[18]. Only recently, standing light waves generated by
intense short-pulse lasers have been applied to modify
either the optical properties of a dense gas [19,20] or to
characterize a beam of electrons of fs duration by electron
beam diffraction [21].
In this Letter we report impulsive acceleration of neutral

He atoms in an intense standing light wave of a few tens of
fs duration with intensities well in the strong-field

tunneling regime [22]. Observation of strong-field KD
scattered atoms becomes possible in a linearly polarized
laser field through the process of frustrated tunneling
ionization (FTI) [23,24] as will be explained later on in
more detail. Specific polarization of the two counterpro-
pagating laser beams that form the standing wave allows for
the investigation of strong-field KD scattering of neutral
atoms with almost no background.
We generate a standing light wave with two counter-

propagating elliptically polarized laser pulses traveling
along the z axis, either corotating or counterrotating
indicated by the (þ) or (−) sign, respectively. Neglecting
the laser pulse envelope for the time being we can write
the fields traveling from the left and the right side
~El ¼ E0½êx cosðωt − kzÞ þ êyϵ sinðωt − kzÞ� and ~Er ¼
E0½êx cosðωtþ kzÞ � êyϵ sinðωtþ kzÞ�, respectively. E0 is
the field strength, ω is the angular laser frequency, ϵ is the
ellipticity, and the � sign determines the helicity. All
equations are given in atomic units unless stated otherwise.
Adding the fields, we obtain

~EðþÞ ¼ 2E0 cosðkzÞ½êx cosðωtÞ þ êyϵ sinðωtÞ� (1)

~Eð−Þ ¼ 2E0 cosðωtÞ½êx cosðkzÞ − êyϵ sinðkzÞ�: (2)

For ϵ ¼ 1, i.e., for circularly polarized fields, the first
combined field, (þ), is circularly polarized with an ampli-
tude that varies spatially with cosðkzÞ and thus gives rise to
a spatially modulated intensity along the z axis proportional
to cos2ðkzÞ. Although a standing wave is produced, strong
field excitation of atoms is inhibited due to the circular
polarization of the combined beam ~EðþÞ [23]. In the second
case (−) of counterrotating circularly polarized fields,
the resulting field has linear polarization which rotates
with constant field amplitude periodically along the z axis.
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The intensity is thus constant along the z axis without
exhibiting an intensity gradient. However, for elliptically
polarized laser pulses with 0 < ϵ < 1 the situation for the
(−) case differs substantially. We calculate the cycle
averaged intensity for ~Eð−Þ, Eq. (2),

ĪðzÞ ¼ ¯~E2
ð−Þ ¼ E2

0½ð1þ ϵ2Þ þ ð1 − ϵ2Þ cosð2kzÞ�: (3)

Equation (3) describes a linearly polarized standing wave
with a reduced visibility v ¼ ðĪmax − ĪminÞ=ðĪmax þ ĪminÞ ¼
ð1 − ϵ2Þ=ð1þ ϵ2Þ that depends on the ellipticity of the
individual fields. Most important to note is that the intensity
gradient can be tuned with the help of the ellipticity of the
individual beams. Finally, we multiply Eq. (3) with the time
envelope of the laser pulses fðtÞ ¼ expð−t2=τ2), where τ is
the laser pulse duration, to obtain in a good approximation
the slowly time varying cycle averaged intensity Iðz; tÞ ¼
ĪðzÞfðtÞ of the standing light wave.
In Fig. 1(a) we show the experimental setup. By means

of a beam splitter, laser pulses from a Ti:sapphire laser
(1 kHz repetition rate, pulse duration 55 fs, pulse energy up
to 2 mJ) are split into two pathways. The beams are then
steered into a vacuum chamber from opposite sides, where
they overlap in time and space to form the standing light
wave. In order to assure the correct time overlap of the laser
pulses the path length of one arm can be adjusted. Each
laser beam, initially linearly polarized, passes through a
quarter wave plate oriented at a suitable angle to adjust
ellipticity (0 < ϵ < 0.9) and helicity. We note that we are
not able to provide perfectly circularly polarized light
(ϵ ¼ 1) due to imperfections of our polarization beam
splitter. Each of the two beams is then moderately focused

by a lens down to a beam waist w0 of 33 μm and 38 μm,
respectively, into a well-collimated thermal atomic beam of
He atoms, where atoms are excited and accelerated. The
mean time of flight of excited He* atoms toward the
detector is 220 μs. They can be detected by a standard
position sensitive multichannel plate (MCP) detector (see,
e.g., Ref. [25]), if they are still in an excited state when they
hit the detector. This is likely since a large fraction of
initially excited Rydberg states decay to a long-lived
metastable state.
The interaction volume of the standing wave with the He

beam is cylindrically shaped with a diameter of 2w0 ≅
70 μm and a length of about 20 μm, which is given by the
short time overlap of the two counterpropagating pulses.
Consequently, it is solely the standing light wave that
initiates both the excitation of He atoms and the accel-
eration process. Each individual elliptically polarized laser
beam is unable to leave He in excited states [23], so that the
signal is almost background free.
In Fig. 1(b) we display a raw detector image. We observe

deflected excited atoms distributed in a stripe along the z
axis with a length of a few centimeters and a small width.
The width of the stripe is due to the radial acceleration of
atoms with respect to the beam propagation in the intensity
gradient of the focused laser beam [24]. The ratio of length
to width of the stripe is a direct indication of how much
stronger the effective intensity gradient in the standing light
wave is than in the focused laser beam. We note that we do
not observe any signal if we change the helicity of the
individual laser beams to the (þ) case as expected and also,
we do not observe any signal from each individual laser
beam alone. Additionally, we measured final velocity
distributions for three different gases (He, Ne, and Ar)

FIG. 1 (color online). (a) Experimental setup (for explanation see text). λ=4 and MCP denote quarter wave plates and multichannel
plate, respectively. In (b) we display a detailed sketch of the time integrated intensity of the standing wave together with a raw detector
image of the deflected He* atoms along the z axis. The number of excited He atoms impinging on the detector is color coded. The rod
electrodes remove charges from strong-field ionization.
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and find that the width of the distributions scales with the
mass of the atom; see the Supplemental Material [26].
We performed systematic measurements by increasing

the laser intensity of the standing wave while keeping the
ellipticity fixed at ε ≈ 0.85; see Fig. 2(a). In Fig. 2(b) we
show results where we fixed the intensity of the standing
wave at I ¼ 6.3 × 1014 Wcm−2 and adjusted the ellipticity
to ϵ ¼ 0.85 and ϵ ¼ 0.6. To compare with theory we use
the measured position and the time of flight to calculate
the final velocity in the z direction. Inspecting the data in
Fig. 2(a), we find that the overall signal increases with
increasing laser intensity, but the final velocity does not.
Obviously, the maximum momentum imparted on the
atoms has an upper bound, either given by the fact that
the atom ionizes in the strong gradient field or, that a
recapture of the electron in the strong gradient field is
inhibited in the first place. On the other hand, the data in
Fig. 2(b) show that for ϵ ¼ 0.6 the maximum velocity is
twice as high as in the case of larger ellipticity. This
indicates that the maximum gradient force the atom can
bear before it ionizes depends on the ellipticity and thus
might be dynamically altered due to the modified inter-
action of the quasibound electron with the laser field.
In order to analyze our data quantitatively we recall the

interpretation of excitation and acceleration of atoms [23,24]

within the tunneling picture [1,22] and simple man’s model
of strong-field physics [27]. An electron tunnels through the
finite barrier temporarily established by the Coulomb poten-
tial and the (oscillating) laser field. Particularly those
electrons that tunnel slightly before a field cycle maximum
do not gain enough drift energy to escape the Coulomb
potential after the laser pulse has turned off. This frustrated
tunneling ionization has been found to be an important exit
channel that leads to excited states [23]. During the field
pulse the electron is quasifree and feels the ponderomotive
force Fp, which is given for a free charged particle
by the gradient of the ponderomotive potential
Up ¼ ðq2=2Mω2ÞĪðzÞ

Fp ¼ −
∂Up

∂z ¼ −
1

2ω2
ðq2=MÞ ∂ ĪðzÞ∂z : (4)

q is the charge andM the mass of the charged particle. Since
the electron finds itself in a bound excited state after the laser
pulse has terminated, the ponderomotive force accelerates
the whole atom with acmsðtÞ ¼ ðFp=MHeÞfðtÞ, where MHe
is the mass of the He atom and the subscript cms denotes the
center of mass of the system. The acceleration varies with the
laser pulse envelope fðtÞ, but only sets in at the instant of
time t0, when the tunneling takes place. The atomic motion
is negligible on the time scale of the laser pulse [24], which
gives rise to an impulsive acceleration.
In order to describe the observed velocity distribution of

atoms we assume that the atoms have an effective polar-
izability α ¼ 1=2ω2 corresponding in good approximation
to a quasifree oscillating electron in the field of an ion. The
atoms are initially located in the vicinity of the field
maximum at z ¼ 0 between the two adjacent field minima
at z ¼ �π=4k. We assume the standing wave to be built up
in time following fðtÞ. The number of atoms at each
position is proportional to the excitation probability. This is
roughly proportional to the tunneling rate of ionization,
which depends on the field strength E ¼ Iðz; tÞ1=2 in the
standing wave. Using Fp ¼ −ðϵ2 − 1ÞðE2

0=ω
2Þk sinð2kzÞ

[see Eq. (4)], the final velocity of a He atom is given by
vf ¼ R

∞
t0
acmsðtÞdt ¼ ðFp=MHeÞ

R
∞
t0
fðtÞdt, where S ¼R∞

t0
fðtÞdt can be considered an effective time of accel-

eration. The instant of tunneling t0 at each z position is
distributed according to the tunneling probability of the
electron during the pulse. This results in a distribution of
the effective acceleration time. For the calculation, we take
the values for the ellipticity ϵ and for the intensities of the
laser beams from the experiment. Finally, to account for the
striking fact that above a certain laser intensity the final
maximum velocity does not increase, we assume atoms to
be ionized or not excited, if they experience a ponder-
omotive force that is larger than a limit set by hand, and
discard them from the calculation. We remark that a full
Monte Carlo trajectory calculation using the Lorentz
equations for the electron and the ion including their

FIG. 2 (color online). Final velocity distribution of deflected
He* atoms. (a) As a function of intensity I: c1: 2.5 × 1014W cm−2,
c2: 3.4 × 1014 Wcm−2, c3: 4.2 × 1014 Wcm−2, c4: 5.1×
1014 Wcm−2, and c5: 6.3 × 1014 Wcm−2. The ellipticity is fixed
at ϵ ¼ 0.85. (b) as a function of ellipticity. Experimental curves, c2:
ϵ ¼ 0.6 and c3: ϵ ¼ 0.85. Theoretical curve c1: ϵ ¼ 0.6. The
intensity is fixed at I ¼ 6.3 × 1014 Wcm−2. The experimental
curves in (a) and (b) are smoothed. Visible structures on a small
velocity scale are likely due to statistical effects.
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coupling through the Coulomb force should be able to
predict this limit.
The simple model calculation results in theoretical

curves, which are in good agreement with the experimental
data; see solid red curves in Fig. 3. The overall yield, which
has been treated as a free parameter in each spectrum
[Figs. 3(a)–3(e)], follows in good agreement the increasing
total yield of atoms calculated by the Ammosov-Delone-
Krainov (ADK) tunneling formula [28]. The relative
numbers for the overall yield given in Fig. 3 are the same
as in Fig. 2. ϵ ¼ 0.85 has been kept fixed for all spectra. We
note, however, that treating ϵ also as an individual fit
parameter in each spectrum a better agreement for indi-
vidual spectra can be achieved as shown in Fig. 3(b), green
curve, where we use ϵ ¼ 0.9 instead of ϵ ¼ 0.85. The
velocity distribution for lower ellipticity ϵ ¼ 0.6, shown in
Fig. 2(b), curve c2, reveals a maximum final velocity
almost twice as high as before. Although a higher final
velocity can be expected on the basis of Eqs. (3) and (4),
obviously the limit of the ponderomotive force used before

is not independent of ellipticity. Consequently, to model the
data we have to take into account a substantially higher
limit; see Fig. 2(b), curve c1.
To elucidate the ellipticity dependence, we mention that

the limit of the ponderomotive force used to explain the
data for ϵ ¼ 0.85, corresponds to a field strength that would
ionize atoms with an effective quantum number ν ¼ 4.6.
Sample classical Monte Carlo calculations for the FTI
process in a standing light wave, however, show that a
substantial number of atoms are left in Rydberg states with
higher n quantum numbers. This indicates that the gradient
force does not necessarily lead to field ionization, as one
would expect from its equivalent field strength [29]. Rather
it can be seen as an integral part of the dynamical process.
Inclusion of the gradient force might lead as well to bound
trajectories, which would not be present if the ponder-
omotive force were absent. In that sense, more elaborate
calculations are needed to determine the limit of the
ponderomotive force ab initio.
Finally, to get a complementary picture we treat the KD

scattering in a very simplified way quantum mechanically
as outlined in the Supplemental Material [26]. The results
are very similar to the classical calculations. The momen-
tum imparted on the atom in the best case corresponds to
more than 400 two-photon absorptions within a 55 fs pulse
duration yielding a scattering rate Γ > 1016 s−1.
In conclusion, we report extreme longitudinal acceler-

ation of He atoms located in an intense short-pulse standing
wave. Besides the absorption of energy corresponding to
roughly 15 photons from the standing light wave we also
measure the strong momentum transfer equivalent to more
than 800 photon momenta during the short laser pulse. The
Kapitza-Dirac scattering of neutral He atoms takes place
with an unprecedented scattering rate exceeding 1016 s−1.
The investigation opens up new perspectives in strong-field
physics by focusing on the importance of the magnetic field
and on field gradients. Particularly, the existence of
spatially separated pure electric and pure magnetic fields
might allow for probing matter with intense magnetic fields
at optical oscillation frequencies unperturbed by electric
fields. Furthermore, the possibility to vary the polarization
properties on an atomic scale might allow us to investigate
chirality of molecules in the strong-field domain (super-
chiral light) [30]. Finally, we expect our experimental work
to stimulate strong-field quantum mechanical calculations
beyond the dipole approximation.
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