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In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice
of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron
drip (~4 x 10" gem™ or roughly one-thousandth of nuclear matter density), the interstitial neutrons give
rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely
equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO;. As a
consequence, the properties of matter in the inner crust are expected to be much richer than previously
appreciated, and we mention possible consequences for observable neutron star properties.
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Many technologically important properties of terrestrial
metals are governed by the fact that these materials exhibit
a variety of crystal structures. Pure metals have many
different phases [1]. For alloys, even more possibilities
exist, and these have far-reaching implications: e.g., the
strength of steels is determined to a high degree by the
existence of different crystal structures. Here we consider
matter in the outer parts of a neutron star (its crust), which is
important for interpreting observations of neutron stars
even though it comprises only a small fraction of the total
mass of the star. In the traditional view, this matter is
simple, because correlations between electrons, which are
crucial for terrestrial matter, play little role. However, at
densities above one-thousandth of nuclear density, matter
consists of a crystal lattice of atomic nuclei permeated by
neutrons [2]. The neutrons behave like a second component
in a binary alloy, and we argue that, as a consequence, the
properties of matter are more similar to those of terrestrial
solids than has been previously appreciated. Specifically,
the neutrons give rise to an attractive interaction between
nuclei which makes the lattice unstable to clumping of
nuclei in a manner similar to the formation of inhomo-
geneous regions in metallic alloys (spinodal decomposi-
tion) [3]. While the attraction is insufficient to make matter
unstable to long-wavelength distortions, it can destabilize
matter at finite wavelengths where the effective interaction
between nuclei due to their electrical charges is reduced.
We describe a number of possible consequences for
observable properties of neutron stars.

To set the scene, we consider the condition for thermo-
dynamic stability of the system of nuclei immersed in a sea
of neutrons, together with a background of electrons whose
average density is the same as that of the protons to ensure
electrical neutrality. The system may thus be regarded as
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having two components: the neutrons (both those in nuclei
and the interstitial ones) and the charged particles. For most
of the life of a neutron star, the temperature is so low that
thermal effects may be neglected. In that case, the condition
for stability is that the second-order change in the energy
density be positive for neutron and proton densities slightly
different from the initial ones (which are determined by the
condition that matter is in equilibrium to weak interaction
processes), i.e.,

1
§E = EZ5n,.5nj15,.j > 0, (1
i

where E;; = O?E/On;0n j [4]. The species labels i and j
here refer to neutrons (n) and protons (p), and the n; are
particle number densities. For electrically neutral matter,
the electron density n, is equal to the proton density and
is therefore not an independent variable. The quantity
E(n,,n,) is the energy of the system, including electrons,
per unit volume. Sufficient conditions for stability are that
one of the diagonal elements of E;; be positive and that the
determinant of the matrix, E,,E,, — E? p» bE positive.
Since E,, > 0, the latter condition may be rewritten as

2
Epp—?p:% > 0, 2)

nn Plu,
where the y; are chemical potentials. Equation (2) has the
physical interpretation that the effective proton-proton
interaction be positive [5]: the first term is usually referred
to as the direct interaction, because it represents the
interaction when the neutron density is held fixed, while
the second term, the so-called induced interaction, is the
contribution to the interaction due to the change in the
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neutron density. The second term, which is attractive, is
similar to the phonon-induced interaction between elec-
trons that is responsible for conventional superconductivity
in terrestrial metals, except that in a neutron star the
exchanged phonon is a neutron density fluctuation [6].

Calculation of the derivatives E;; is a challenge, because
the system has two phases: the nuclei and the neutrons
between nuclei. Consequently, the derivatives are not
simply related to those of bulk nuclear matter. In order
to obtain thermodynamically consistent results, we have
recently evaluated them from Lattimer and Swesty’s micro-
scopic calculations of the properties of dense matter [7,8]
and thereby take into account the fact that, when neutrons
are added to the system, they are distributed between the
two phases. Our results show that matter is stable for bulk
disturbances, since the magnitude of the induced interac-
tion is typically no more than 0.2-0.3 times the direct
interaction [9]. The stability is due to the fact that, when
the proton density is increased, the electron density must
also increase and the effective proton-proton interaction
is dominated by the energy required to compress the
electrons.

The situation is different at finite wavelengths, or non-
zero wave number k. The direct proton-proton interaction
has two contributions. The first of these is due to the
Coulomb interaction, and the dominant term for small &
comes from density variations at the same wave number.
This is screened by the electrons and is given by [10]

Vo(k)

= 3
1 Volkz. () ©)

V(k)

where V, (k) = 4ze?/k? is the bare Coulomb interaction, e
being the elementary charge, and y,.(k) is the electron
density-density response function. For small k, y, (k) tends
to dn,/ou, = 1/E,,, and therefore V (k) tends to du,/0on,.
Inserting standard results for a relativistic gas, one finds
that, for X much less than the electron Fermi wave number
k., the effective proton-proton interaction is given by
(see Chap. 2 in [2])

V(o)

V(k) = ——525,
() 1+ K2/ k3

“)

where the Thomas-Fermi screening wave number is given
by ki = (4a/n)k2, a = e*/hc being the fine structure
constant. The wave number kpp is smaller than the wave
number at the boundary of the first Brillouin zone along a
cubic axis: for a bec structure, kg; = 27/a with a being
the spacing of nuclei at the corners of a cubic cell, and
krp/kgy = (6'3/7°/%)a'/?Z'/3 ~ 0.2. Consequently, the k
dependence of the interaction is very important on the
scale of the first Brillouin zone. There is also a Coulombic
contribution E,, from umklapp processes, but, as calcu-
lations of phonon frequencies for a Coulomb lattice

demonstrate [11], this varies on a wave number scale
~kgz so it is a reasonable first approximation to regard the
umklapp contribution as constant.

The second contribution to E,, is due to the strong
interaction between nucleons, and this too we would expect
to vary with k with a characteristic scale kg7, so we shall
also neglect its dependence on k. We therefore take £, , ata
nonzero wave number to be the screened Coulomb inter-
action (4) plus a constant term whose magnitude is chosen
to give the correct limit for k — 0:

_ Oue 1 Ope
Epplb) = on 1+ Ky (EPP an)
2
_p, Ok K )

PP On, ke + K

This equation expresses the fact that at finite wavelengths
it is less costly energetically to create proton density
modulations, because electrons do not follow the protons
if the wave number is comparable to or greater than krg.
To investigate stability at nonzero k, we first assume that
the instability condition is a direct generalization of Eq. (2)
to this case. We expect the k dependence of E,,, and E,,, to
be on wave number scales of the order of kg7, and therefore
we replace these parameters by their kK = 0 values. The
smallest unstable wave number k.. is thus given by

k? E;, 1 -l
= |(Z2_E, ) —+1| -1 6
k%‘F |:<Enn pp> Eee * :| ' ( )

which reduces to E,mEpp/Eﬁp —1forE,, =E,, InFig. 1,
we show the calculated values of k./(27z/a) as a function
of density. The predicted values of k. are well below 27/ a,
so our neglect of the k& dependence of the parameters is a
good first approximation.
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FIG. 1. Wave number for the onset of instability compared with

the wave number 2z/a, which gives the extent of the first
Brillouin zone along a cubic axis, as a function of density. The
solid line shows results when the shear elastic constants are
included [Eq. (7)], while the dashed line shows the results when
they are neglected [Eq. (6)]. The inset shows the lattice spacing as
a function of density.
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The critical wave number for instability depends very
little on whether the original system is a regular solid or a
glass, because the main contributions to the energy depend
strongly on the volume per nucleus but weakly on the
geometry of the cell containing a nucleus. Because E,,, is
negative, the induced interaction between nuclei favors
inhomogeneous matter where regions with a higher density
of nuclei also have a higher neutron density.

One may ask whether the instability found above could
grow significantly in a neutron star. Using the formalism of
Ref. [8], we have estimated the angular frequency and the
growth rates of the softest mode. Since the effective
neutron-proton interaction E,, is negative, the proton
and neutron density variations are in phase for this mode,
which corresponds to the one with frequency kv_ in the
notation of that paper. We neglected the shear elastic
constant, and the results are shown in Fig. 2 for two
densities. As far as the critical wave number is concerned,
this calculation is completely equivalent to Eq. (6). For
wave numbers different from the critical one, one needs, in
addition to the thermodynamic derivatives already consid-
ered, the neutron superfluid density, and for our calcula-
tions we have assumed that the number density of
superfluid neutrons is equal to the density of neutrons
outside nuclei. From these results, one sees that the growth
times of unstable modes are extremely short on the scale
of the lifetime of a neutron star, and this conclusion is
unaffected by uncertainties in the neutron superfluid
density, which calculations of Chamel indicate could be
an order of magnitude smaller than the value we have
taken [12].

In the approximations made above, it was assumed that
the energy per unit volume depends only on the densities
of neutrons, protons, and electrons; thus, effects due to
distortion of the crystal from its original cubic form have
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FIG. 2 (color online). Frequency w_ = kv_ for the mode in
which neutrons and protons move in phase with each other. When
w_ is real, its value gives the oscillation frequency (solid lines),
while when it is imaginary, the mode is unstable with a growth
rate Im(w_) (dashed lines). When the periodicity of the system
is properly taken into account, the dispersion relation will have
zero slope at the zone boundary (kg = 27/a) for k along one of
the cubic axes.

not been taken into account, and the dispersion relation for
modes is independent of the direction of the wave vector.
Taking into account the cubic symmetry leads to an
anisotropy in the dispersion relation, and we now determine
the direction of the wave vector of the most unstable mode
for an initial state with a bce structure, which is the most
stable one in the absence of the interaction between nuclei
induced by neutrons. For a cubic crystal with no interstitial
neutrons, there are three independent elastic constants,
which are conveniently taken to be the bulk modulus
B = (cy; +2¢15)/3, the modulus ¢4y that describes a
shearing perpendicular to one of the cubic axis, and the
quantity ¢y, — ¢, which describes response to a volume-
conserving distortion with extension along one cubic axis
and compression along one of the other axes. Here we use
the standard notation for elastic constants [13]. For bulk
stability, B, ¢;; — ¢1», and ¢4y must all be greater than zero.
For a bcc Coulomb lattice, the shear elastic constants are
dominated by the static lattice contribution, c¢;; — ¢~
0.10n;,Z%e*/a, and cuy ~0.37n;,Z%e*/a [14], where n; =
n,/Z = 2/a’ is the density of nuclei. For an isotropic solid
the ratio (cy; — ¢12)/2¢44 is unity, while for a Coulomb
crystal it is ~0.13. Crustal material is therefore unusually
anisotropic and similar to lithium and plutonium by this
measure. For this case, the wave vectors of the most
unstable modes associated with a density fluctuation lie
along the cubic axes, as Cahn showed in his classic analysis
of spinodal instability, in which a binary alloy forms
regions with different composition [15]. The phase
transition in the neutron star case differs from the
usual spinodal instability in that it occurs at a finite
wavelength. The instability occurs first when c¢|; =
B+ 2(cy; —c12)/3 =0, which is more restrictive than
the condition B = 0 for a crystal with no rigidity to shear.
When interstitial neutrons are included, the instability
condition is essentially the same, except that the bulk
modulus is replaced by the effective proton-proton inter-
action E,,(k) — E3,/E,, times n3. The critical wave
number is thus given by

E2, 2(ci —cp)
np 11 12
- STt . 7
E, 3 n} )

Epp(kc)

The solid line in Fig. 1 shows the results of this calculation,
and one sees that the inclusion of the shear elastic constants
has little effect on the critical wave number. This is because
contributions to the shear elastic constants are typically of
the order of Z?3a ~0.1 times the other terms in the
instability condition, since the relevant energy scale for
the bulk modulus is n20u,/on,.

One may ask how robust the instability is to uncertainties
in the input nuclear physics. One piece of evidence comes
from a simple model for matter at densities not too close to
nuclear saturation density: nuclei described by a semi-
empirical mass formula immersed in a neutron fluid. This
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shows that the induced interaction between nuclei diverges
as the density tends to the neutron drip density from above;
consequently, the instability appears inevitable near the
outer boundary of the inner crust [16]. A second piece of
evidence comes from work of Chamel, who calculated
thermodynamic derivatives for crustal matter by using an
extended Thomas Fermi method and the BSk14 Skyrme
interaction, which gives a good fit to observed nuclear
masses: he found instability over a broad range of
densities [17].

On the basis of the instability analysis alone, it is
impossible to predict the equilibrium structure, which
depends on higher-order terms in the expansion of the
energy in powers of density deviations. However, one
would expect the actual structure of the metal to be
modulated at wave vectors corresponding to the most
unstable modes. In our model, growth rates of modes
increase with k for k > k. (Fig. 2), and the maximum
growth rate would occur at the zone boundary, which is at a
wave vector (1,0,0)27z/a or some equivalent wave vector,
where a is the length of the edge of a cubic unit cell. This
corresponds to a doubling of the volume of the unit cell,
which becomes a cube with two atoms per unit cell, the one
in the middle of the cube being displaced from the center
of the cube, as shown in Fig. 3. The transition is thus
analogous to that to a ferroelectric in materials such as
BaTiO; [18], but in the neutron star case there is no
ferroelectricity, because the displaced nuclei at the center
of the cube are identical with the nuclei at the corners.
In terrestrial materials under pressure, many examples of
incommensurate phases have been discovered [19], and
further studies are necessary to determine if such a phase
could occur in neutron star crusts.

L

FIG. 3 (color online). Schematic picture of the undistorted bec
lattice (left) and the structure in which the central atoms in the cell
are displaced to the right along one of the cubic axes (right),
thereby creating a superlattice structure with two atoms per cell.
While the nuclei at the centers of cubic cells are identical with
those at the corners, for clarity we show nuclei at the centers of
unit cells of the undistorted structure as red (dark gray) and those
at the corners as green (light gray). If one takes the displacement
of the nuclei to lie in the x direction and to be of magnitude §, one
sees that the density of nuclei is higher in the vicinity of the
planes x = 6/2 — a/4 4+ oa and lower in the vicinity of the
planes x = 6/2 + a/4 + oa, where o is an integer.

As regards the basic mechanism, the instability consid-
ered here is similar to that previously considered for a
uniform fluid of protons, neutrons, and electrons [20-22],
which signals the formation of proton clusters (and the
high-density boundary of the inner crust) as the density of
matter is reduced below nuclear saturation density.
In crustal matter, however, the positive charge resides in
nuclei, not a homogeneous proton fluid. In both cases, an
important element is the reduction of the effective Coulomb
interaction at nonzero wave numbers. In the case of the
instability of uniform fluids, a stabilizing effect at higher
wave numbers is provided by contributions to the energy
that depend on density gradients. Identifying the corre-
sponding terms in the case of the instability of a lattice of
nuclei is a subject for future work.

In this Letter, we have demonstrated that, because
interstitial neutrons in the inner crust behave in a way
similar to a second species in a metallic alloy, the physics
of the crust is much richer than has been appreciated
previously. The phase transition we predict could have
consequences for a number of important properties of
neutron star crusts and for interpreting observations from
space-based instruments. Thermodynamic and transport
properties of the crust should be reinvestigated, since they
are important in understanding cooling of neutron stars
[23], thermal relaxation of the crust [24], and glitch
phenomena [25,26]. The breaking strain of the crust, which
is sensitive to phase transitions of the lattice, is important
in a number of contexts. For example, precursor flares prior
to the short gamma-ray bursts [27] may be understood as
being due to breaking of the crust by tidal forces or as the
outcome of a resonance of elastic modes [28]. In Ref. [29],
it has been suggested that what the authors refer to as
“mountains,” nonaxisymmetric distortions of the mass
distribution in the inner crust of rapidly rotating, accreting
neutron stars, could be detected due to their emission of
gravitational waves: the maximum strength of such gravi-
tational wave emission is sensitive to the breaking strain of
matter, since this determines the maximum height of a
mountain. From experience with terrestrial solids, one
knows that the breaking strain of real materials is very
different from, and often larger than, that for a perfect
lattice, e.g., in martensitic steels.

With the current rapid advances in computational
methods in nuclear physics, as well as the increasing
amount of experimental data on neutron-rich nuclei that
are becoming available, the way is now open to take a
fresh look at the properties of matter in the inner crust.
In particular, it is important to improve calculations of
the thermodynamic derivatives that enter the instability
condition. One aspect of the problem that we have not
addressed in this Letter is the role of impurity nuclei.
In terrestrial materials, these have an enormous influence
on physical properties, and their role in neutron stars needs
to be reinvestigated.
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