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We calculate the kaon semileptonic form factor fþð0Þ from lattice QCD, working, for the first time, at
the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with
Nf ¼ 2þ 1þ 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as
those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum
limit. Our result, fþð0Þ ¼ 0.9704ð32Þ, where the error is the total statistical plus systematic uncertainty
added in quadrature, is the most precise determination to date. Combining our result with the latest
experimental measurements of K semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa
matrix element jVusj ¼ 0.22290ð74Þð52Þ, where the first error is from fþð0Þ and the second one is from
experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from jVusj
is now comparable to that from jVudj.
DOI: 10.1103/PhysRevLett.112.112001 PACS numbers: 12.38.Gc, 12.15.Hh, 13.20.Eb

Introduction.—The Cabibbo-Kobayashi-Maskawa [1]
(CKM) matrix underpins all quark flavor-changing inter-
actions in the standard model of particle physics.
Symmetries reduce the number of physical parameters
of this 3 × 3 unitary matrix to four. They can be taken to
be jVusj, jVubj, jVcbj, and argðV�

ubÞ, where subscripts
denote the quark flavors interacting with the W boson.
The focus of this Letter is to reduce the theoretical
uncertainty in the first of these, in a way that sharpens
the test of CKM unitarity from the first row of the
matrix.
The test asks whether, or how precisely,

Δu ≡ jVudj2 þ jVusj2 þ jVubj2 − 1 (1)

vanishes. The CKM matrix elements are determined from,
respectively, superallowed nuclear β decays, kaon decays,
and B-meson decays to charmless final states. A failure of
the test would be evidence for phenomena beyond the
standard model. As it happens, Δu and analogous tests
remain in agreement with the CKM paradigm. Still, the
absence of deviations provides stringent constraints on
nonstandard phenomena and their energy scale [2].
Until now, the error

ðδΔuÞ2 ¼ 4jVudj2ðδjVudjÞ2 þ 4jVusj2ðδjVusjÞ2
þ 4jVubj2ðδjVubjÞ2 (2)

has been dominated by the second term, because jVudj ¼
0.97425� 0.00022 is so precise [3] (the third term is
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negligible). One can determine jVusj via the axial-vector
current, i.e., leptonic kaon decays [4–10], or via the vector
current, i.e., semileptonic decays [11–15]. The current
precision is at the level of 0.23%–0.4% [9,10] for the
former, but only ∼0.5% [14,15], for the latter. According
to the standard model, both approaches should yield the
same result, because the W-boson current has the struc-
ture V − A.
For semileptonic decays, the relation between the exper-

imentally measuredK → πlνðγÞ inclusive decay width and
the CKM matrix element jVusj, up to well-known overall
factors, is [16]

ΓKl3ðγÞ ∝ jVusj2jfK0π−þ ð0Þj2ð1þ δKlEM þ δKπSUð2ÞÞ: (3)

The quantities δKlEM and δKπSUð2Þ denote long-distance electro-
magnetic and strong isospin-breaking corrections, respec-
tively [16]. The latter is defined as a correction relative to
the K0 mode. The quantity needed from lattice QCD is the
vector form factor fþð0Þ, defined by

hπðpπÞjVμjKðpKÞi ¼ fKπþ ðq2Þ
�
pμ
K þ pμ

π −
m2

K −m2
π

q2
qμ
�

þ fKπ0 ðq2Þm
2
K −m2

π

q2
qμ; (4)

where Vμ ¼ s̄γμu and q ¼ pK − pπ is the momentum
transfer.
We previously [14] presented a lattice-QCD calculation

of fþð0Þ using the Nf ¼ 2þ 1 gauge-field configurations
generated by the MILC Collaboration. The RBC/UKQCD
Collaboration presented an independent calculation [15],
using a different set of Nf ¼ 2þ 1 gauge-field configura-
tions. Even though both works reduce the error on jVusj
from fþð0Þ to ∼0.5%, it is still roughly 2 times larger than
the experimental uncertainty from ΓKl3ðγÞ .
Before, our dominant systematic uncertainty came

from the chiral extrapolation of light-quark masses from
their simulation values to the physical point [14]. Here,
we reduce this uncertainty by a factor of 5 with data
directly at the physical light-quark mass. Thus, the
extrapolation becomes an interpolation. We work with
a subset of the Nf ¼ 2þ 1þ 1 ensembles generated
(again) by the MILC Collaboration [17]. The new
ensembles use an action for the sea quarks with 3 times
smaller discretization effects. We now use three different
lattice spacings, instead of only two. In these ensembles,
the strange sea-quark masses are much better tuned than
before, reducing another important uncertainty in
Ref. [14]. Finally, the new ensembles include the effects
of charm quarks in the sea.
Simulation details and statistical errors.—We largely

follow the strategy of Ref. [14]. Hence, this Letter only
summarizes the main features and points out the
differences. We refer the reader to Ref. [14] for details

of our methodology and to Ref. [18] for technical details of
the current numerical work.
We obtain the form factor using the relation [19]

fþð0Þ ¼ f0ð0Þ ¼
ms −ml

m2
K −m2

π
hπðpπÞjsūjKðpKÞi: (5)

The last expression requires no renormalization and allows
us to extract the form factor from three-point correlation
functions with less noise than Eq. (4). The momentum of
the pion, pπ , is adjusted via partially twisted boundary
conditions [20,21], such that q2 ¼ 0.
Table I shows the simulation parameters of the ensem-

bles used here [17]. These ensembles use a one-loop
Symanzik-improved gauge action for the gluons [22,23],
and the highly improved staggered-quark (HISQ) action
[24] for the u, d, s, and c quarks in the sea. The HISQ sea
quarks were simulated with the fourth-root procedure for
eliminating extra quark species (often called tastes) arising
from fermion doubling [25–34].
We study data at four different values of the lattice

spacing. The number of configurations analyzed at
a ≈ 0.06 fm is too small to remove autocorrelation effects
in a controlled way, so this data set is not used in the central
fit but as a cross-check of discretization effects.
The strange and charmed masses are always near their

physical values. In most cases, however, a better tuning of
ms became available before computing the matrix element
in Eq. (5). We have chosen the better tuned value for the
valence quarks, hence, the different values ofmval

s andmsea
s .

The up and down sea-quark masses are taken to be the
same: ml ¼ 0.2ms, 0.1ms, or ms=27. The last corresponds
very nearly to the physical pion mass, 135 MeV. We
include data at heavier-than-physical pion masses to further
control the chiral-continuum fit.
While the column labeled by mP

π in Table I corresponds
to the valence pion, the root-mean-squared pion mass,mrms

π ,

TABLE I. Parameters of the Nf ¼ 2þ 1þ 1 gauge-field en-
sembles and correlation functions generated in this Letter.Nconf is
the number of configurations included, Nsrc the number of time
sources used on each configuration, and L the spatial size of the
lattice. Pion masses (fourth and fifth columns) are given in MeV.
Further information, including the light and charm quark masses,
can be found in Ref. [17].

≈a (fm) amsea
s amval

s mP
π mrms

π mπL Nconf Nsrc

0.15 0.0647 0.06905 133 311 3.30 1000 4
0.12 0.0509 0.0535 309 370 4.54 1053 8

0.0507 0.053 215 294 4.29 993 4
0.0507 0.053 215 294 5.36 391 4
0.0507 0.0531 133 241 3.88 945 8

0.09 0.037 0.038 312 332 4.50 775 4
0.0363 0.038 215 244 4.71 853 4
0.0363 0.0363 128 173 3.66 621 4

0.06 0.024 0.024 319 323 4.51 362 4
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provides a measure of the dominant discretization effects,
due to lattice-artifact interactions between staggered quarks
of different tastes. These taste splittings, are of order α2sa2

for the HISQ action, where αs is the strong coupling at a
scale around π=a. They decrease rapidly with the lattice
spacing, as can be seen from the difference of the fifth and
fourth columns in Table I.
We obtain both hadronic matrix elements and meson

energies from combined fits of two-point and three-point
correlation functions. The structure of these three-point
functions is the same as in Ref. [14], but here we only
include moving π data [18]. The correlation function fits
include ground states, and excited and opposite-parity
states [14].
Our correlation-function fits are stable under variations

of the number of states, time ranges, source-sink separa-
tions, and other aspects of the fits. The central values and
statistical errors are shown as a function of the light quark
mass in Fig. 1, which is discussed in more detail below.
Numerical values are given in Ref. [18]. Within the
statistical errors of relative size ∼0.2%–0.4%, the data
show no discretization effects except possibly at 0.15 fm.
Chiral interpolation and continuum extrapolation.—

Even though we have data at the physical quark masses,
we include data at larger mπ. The use of chiral perturbation
theory (χPT) and data at different masses allows us to
correct for small mistunings of the light- and strange-quark
masses, as well as for partially quenched effects due to
mval

s ≠ msea
s . In addition, these data are very precise and

help to reduce the final statistical error. Furthermore, the
dominant discretization effects, are well described by the

χPT formula [35,36], so they are removed when taking the
continuum limit.
In χPT, the form factor fþð0Þ can be written as

fþð0Þ ¼ 1þ f2 þ f4 þ � � �. In continuum QCD, the
Ademollo-Gatto theorem [37] ensures that the Oðp2iÞ
chiral corrections f2i tend to zero in the SU(3) limit as
ðm2

K −m2
πÞ2. In particular, f2 is completely fixed in terms

of well-known quantities. At finite lattice spacing, however,
violations of the Ademollo-Gatto theorem arise from
discretization effects in the dispersion relation needed to
derive the relation in Eq. (5).
We perform the interpolation to the physical masses and

the continuum using next-to-next-to-leading-order (NNLO)
continuum χPT [38], supplemented by next-to-leading-
order (NLO) partially quenched, staggered χPT [39].
Because we observe almost no lattice-spacing dependence
in our data, discretization effects in higher-loop χPT
should be negligible. After removing the dominant dis-
cretization effects with SχPT, the remaining ones, which
stem from violations of the continuum dispersion relation
and higher orders taste-splitting effects, are of order αsa2,
a4, ðm2

K −m2
πÞ2αsa2, and ðm2

K −m2
πÞ2α2sa2. We introduce

fit parameters for these terms—K1, K3, K2, and K0
2,

respectively—and take the functional form

fþð0Þ ¼ 1þ fPQSχPT2 ðaÞ þ K1a2
ffiffiffiffi
Δ̄

p
þ K3a4 þ fcont4

þ ðm2
π −m2

KÞ2½C6 þ K2a2
ffiffiffiffi
Δ̄

p
þ K2

0a2Δ̄þC8m2
π þ C10m4

π�; (6)

where fPQSχPT2 ðaÞ is the NLO partially quenched staggered
χPT expression including leading isospin corrections [40],
fcont4 is the sum of the NNLO continuum chiral logarithms,
and a2Δ̄ is the average taste splitting, with Δ̄ used as a
proxy for α2s. The analytic term C6 is related to a
combination of low-energy constants in continuum χPT,
and C8 and C10 are fit parameters that parametrize chiral
corrections at N3LO and N4LO, respectively. We take
the taste splittings from Ref. [17] and set the rest of
the inputs in the same way as in Ref. [14]. The fit
parameters are constrained with Bayesian techniques. We
fix their prior widths using power counting arguments,
except for K0

2, where we triple the power-counting width,
since it is the numerically dominant term in our fits [18].
Using Eq. (6) expressed in terms of meson masses, we
interpolate to physical pion and kaon masses with electro-
magnetic effects removed [41,42]: mQCD

πþ ¼ 135.0 MeV,

mQCD
K0 ≈mphys

K0 ¼ 497.7 MeV, and mQCD
Kþ ¼ 491.6 MeV.

The last value enters only in f2.
We estimate the statistical errors by generating a set

of 500 pseudoensembles via the bootstrap method and
repeating the fit on each pseudoensemble. The result from
the chiral and continuum interpolation-extrapolation is
fþð0Þ ¼ 0.9704ð24Þ, which is shown in Fig. 1. The fits
cannot precisely determine the coefficients Ki in Eq. (6),

0 0.5

am
l
/(am

s
)
physical

0.97

0.98

0.99

1

f +
 (

q2 =
0)

a = 0.15 fm 
a = 0.12 fm 
a = 0.09 fm 
a = 0.06 fm
chiral interp. in the continuum

chi
2
/dof [dof] = 0.24 [7]     p = 0.97

FIG. 1 (color online). Form factor fþð0Þ vs light-quark mass.
Errors shown are statistical only, obtained from 500 bootstraps.
Different symbols and colors denote different lattice spacings,
and the corresponding colored lines show the chiral interpolation
at fixed lattice spacing. The solid black line is the interpolation in
the light-quark mass, keeping ms equal to its physical value, and
turning off all discretization effects. The turquoise error band
includes statistical, discretization, and higher order chiral errors,
as explained in the text.
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since only the a ≈ 0.15 fm point appears to show any
discretization effects. We examine this issue via fits with
fewer parameters, including one by one the analytical a2

terms in Eq. (6), and excluding higher order chiral terms
[third line in Eq. (6)] to make the comparison cleaner.
The results of these fits are shown in Table II. We find no
difference except when all of the discretization effects are
omitted. Something similar happens with the addition of
higher order chiral terms to the fit function. Adding a N3LO
term slightly changes the central value and increases the
error from 0.9703(23) to 0.9704(24). Adding a N4LO term
does not change either the central value or the error.
The alternate fits with additional discretization terms
and/or chiral terms show that fit errors are saturated.
We, thus, consider the error from the chiral and continuum
interpolation or extrapolation with the fit function in
Eq. (6), fþð0Þ ¼ 0.9704ð24Þ, as the total statisticalþ
discretizationþ chiral interpolation error. The increase in
the error when adding a N3LO term, 0.0004, gives a
measure of the chiral interpolation error, 5 times smaller
than in our previous work [14], thanks to the inclusion of
data at physical quark masses. We discuss further tests of
the robustness of this Bayesian error estimate strategy
in Ref. [18].
Although we omit it from the chiral and continuum

interpolation or extrapolation, we also show data on an
ensemble with a smaller lattice spacing, a ≈ 0.06fm, and
msea

l ¼ 0.2msea
s , the (orange) down-pointing triangle in

Fig. 1. It lies on top of the results for the other lattice
spacings, confirming that discretization effects are much
smaller than statistical errors. The same conclusion follows
from the fact that the red line in Fig. 1, for a ≈ 0.09 fm, is
very close to the continuum one. The remaining significant
sources of systematic uncertainty are given in Table III. We
estimate the error due to including partially quenched
effects only at one loop by the shift in the final result
when using mval

s or msea
s in the NNLO chiral logarithmic

function, fcont4 . To convert dimensionful quantities from
lattice tophysicalunits,weuse thescaler1 ¼ 0.3117ð22Þ fm
[43] obtained from the static-quark potential [44,45]. The
form factor, being a dimensionless quantity, depends on the
scale only via the input parameters. Propagating the uncer-
tainty in the scale through to fþð0Þ yields the entry shown in

Table III. For an estimate of the finite volume error, we
compareourdataobtainedwith twodifferent spatial volumes
and other parameters at a ≈ 0.12 fm fixed. The difference is
about half of the statistical error, sowe take the finite volume
error to be the full size of the statistical error. Finally, we
estimate the error from the NNLO and higher order isospin
corrections to theK0πþ mode by taking twice the difference
between the NNLO contribution to fþð0Þwith and without
isospin corrections [46]. See Ref. [18] for more details.
Final result and conclusions.—Our final result for the

vector form factor is

fþð0Þ ¼ 0.9704ð24Þð22Þ ¼ 0.9704ð32Þ; (7)

where the first error is from the chiral-continuum fit, and
the second, the sum in quadrature of the other systematic
errors listed in Table III. This result is the most precise
calculation of fþð0Þ to date and the first to include data at
physical light-quark masses. It agrees with the previous
results of Refs. [14,15], with a reduced total uncertainty
of 0.33%.
Using the latest average of experimental results for K

semileptonic decays, jVusjfþð0Þ ¼ 0.2163ð5Þ [47], and the
form factor in Eq. (7), one obtains

jVusj ¼ 0.22290ð74Þfþð0Þð52Þexpt ¼ 0.22290ð90Þ: (8)

The unitarity test becomes

Δu ¼ −0.00115ð40ÞVus
ð43ÞVud

; (9)

i.e., the error on Δu from jVusj is now slightly smaller than
that from jVudj. Combining the two errors, one sees a ∼2σ
tension with unitarity. Recall that the semileptonic decay
proceeds through the vector current; the uncertainty of
jVusj=jVudj from the axial-vector current, via leptonic pion
and kaon decays and the ratio fK=fπ [10] already results in
a value of Δu with smaller error. As emphasized above, it is
important to carry out the test with both currents.
In summary, with the HISQ Nf ¼ 2þ 1þ 1 ensembles,

we have reduced the uncertainties on jVusj from the chiral
interpolation and discretization effects. The main remaining
sources of error are Monte Carlo statistics and finite-
volume effects. In order to reach the final target of 0.2%
precision required by experiment, we are increasing

TABLE III. Error budget for fþð0Þ in percent.

Source of uncertainty Error fþð0Þ (%)

statistical þ discretizationþ chiral interpolation 0.24
mval

s ≠ msea
s 0.03

Scale r1 0.08
Finite volume 0.2
Isospin 0.016
Total Error 0.33

TABLE II. Stability of the continuum extrapolation with
omission of discretization terms, in the notation of Eq. (6).
dof stands for degrees of freedom.

Parameters omitted fþð0Þ χ2=dof p

C8, C10, K1, K2, K3, K0
2 0.9714(12) 0.27 0.97

C8, C10, K1, K2, K3 0.9703(23) 0.24 0.97
C8, C10, K2, K3 0.9703(23) 0.24 0.97
C8, C10, K3 0.9703(23) 0.24 0.97
C8, C10 0.9703(23) 0.24 0.97
Central fit: full Eq. (6) 0.9704(24) 0.24 0.97
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statistics and deriving the finite-volume corrections at one
loop in partially quenched staggered χPT with twisted
boundary conditions [48].
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