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We present a measurement of the direct CP-violating charge asymmetry inDþ
s → ϕπ� decays where the

ϕ meson decays to KþK−, using the full Run II data set with an integrated luminosity of 10.4 fb−1 of
proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. The
normalized difference ACP in the yield of Dþ

s and D−
s mesons in these decays is measured by fitting the

difference between their reconstructed invariant mass distributions. This results in an asymmetry of
ACP ¼ ½−0.38� 0.27�%, which is the most precise measurement of this quantity to date. The result is
consistent with the standard model prediction of zero CP asymmetry in this decay.

DOI: 10.1103/PhysRevLett.112.111804 PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Hh, 14.40.Lb

Direct charge-parity (CP) symmetry violation (CPV) in
the Cabbibo-preferred charm decay Dþ

s → ϕπ� should be
nonexistent in the standard model (SM). In the SM, direct
CPV will occur if there are tree and loop (penguin)
processes that can interfere with different strong and weak
phases. There will be no CPV in D�

s → ϕπ� decays as all
of the contributing processes have the same weak
phase (VcsVud) [1]. Any CPV in this channel would
indicate the existence of physics beyond the SM (for
examples, see Ref. [2]). The most recent investigation of
this decay by the CLEO Collaboration yields a
CP-violating charge asymmetry of ACPðD�

s → ϕπ�Þ ¼
½−0.5� 0.8ðstatÞ � 0.4ðsystÞ�% [3] where the direct CPV
charge asymmetry in the decay D�

s → ϕπ� is defined as

ACP ¼ ΓðDþ
s → ϕπþÞ − ΓðD−

s → ϕπ−Þ
ΓðDþ

s → ϕπþÞ þ ΓðD−
s → ϕπ−Þ . (1)

No CPV in this decay is assumed in measurements
of the time-integrated flavor-specific semileptonic charge
asymmetry in the decays of oscillating neutral B0

s mesons
using the decay ðB̄0

sÞ → B0
s → DsμX by the D0 [4] and

LHCb [5] Collaborations, and in the search for direct CPV
in Dþ → ϕπþ and Dþ

s → K0
Sπ

þ decays by the LHCb
Collaboration [6]. Assuming no CPV in D�

s → ϕπ�
decays, the LHCb Collaboration finds that the production
asymmetry of D�

s → ϕπ� decays in proton-proton inter-
actions is Aprod ¼ ½σðDþ

s Þ − σðD−
s Þ�=½σðDþ

s Þ þ σðD−
s Þ� ¼

½−0.33� 0.22ðstatÞ � 0.10ðsystÞ�% [7] where σðD�
s Þ is

the inclusive prompt production cross section. D0 is the

only experiment which can test this assumption with
sufficient sensitivity in the foreseeable future since the
Tevatron collides protons on antiprotons which is a
CP-invariant initial state, and that the systematic uncer-
tainties for this process are small at D0 due to the specific
features of the detector.
A measure of the CPV in mixing is obtained from

the average of the direct measurements of the semilep-
tonic charge asymmetry in decays of neutral B0

s mesons
using the decay ðB̄0

sÞ → B0
s → DsμX [4,5] yielding

assl ¼ ½−0.50� 0.52�%. This asymmetry can also be
extracted indirectly from measurements of charge asym-
metries of single muons and like-sign dimuons [8], the
semileptonic charge asymmetry of neutral B0

d mesons
[using the average at the ϒð4SÞ [9] and the D0 result
[10]], and the ratio of the decay width difference and the
average decay width of B0

d, ΔΓd=Γd [9] resulting in
asslðindirectÞ ¼ ½−1.46� 0.78�%. While the difference
between these two asymmetries is not significant, CPV
in D�

s → ϕπ� decays could potentially explain the 3.6
standard deviation discrepancy between the SM prediction
and the measured charge asymmetries of like-sign
dimuons [8] given that no such discrepancy has been
observed in direct measurements of semileptonic charge
asymmetries.
In this Letter, the D0 Collaboration presents a measure-

ment of ACP using the full Tevatron Run II data sample with
an integrated luminosity of 10.4 fb−1. We assume there is
negligible net production asymmetry between Dþ

s and D−
s

mesons in proton-antiproton collisions. We also assume
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that any integrated production asymmetry of b hadrons that
decay to D�

s is negligible.
This measurement of ACP makes use of the methods for

extracting asymmetries used in the D0 analyses of the time-
integrated flavor-specific semileptonic charge asymmetry
in the decays of neutral B mesons [4,10]. We measure the
raw asymmetry

ADs
¼ NDþ

s
− ND−

s

NDþ
s
þ ND−

s

; (2)

where NDþ
s
(ND−

s
) is the number of reconstructed Dþ

s →
ϕπþ (D−

s → ϕπ−) decays. The charge asymmetry in D�
s

decays is then given by (neglecting any terms second- or
higher-order in the asymmetry)

ACP ¼ ADs
− Adet − Aphys; (3)

where Adet is due to residual reconstruction asymmetries in
the detector, and Aphys is the charge asymmetry resulting
from the decay of b hadrons to D�

s mesons.
The D0 detector has a central tracking system consisting

of a silicon microstrip tracker and the central fiber tracker,
both located within a 2 T superconducting solenoidal
magnet [11,12]. A muon system, covering jηj < 2 [13],
consists of a layer of tracking detectors and scintillation
trigger counters in front of 1.8 T toroidal magnets, followed
by two similar layers after the toroids [14].
The polarities of the toroidal and solenoidal magnetic

fields are reversed on average every two weeks so that the
four solenoid-toroid polarity combinations are exposed to
approximately the same integrated luminosity. This allows
for a cancellation of first-order effects related to instru-
mental charge and momentum reconstruction asymmetries.
To ensure a more complete cancellation of the uncertain-
ties, the events are weighted according to the number of
ϕπ� decays collected in each configuration of the magnets’
polarities (polarity weighting). The weighting is based on
the number of events containing D�

s decay products that
pass the selection criteria and the likelihood selection
(described below), and that are in the ϕπ� invariant mass
range used for the fit.
As there was no dedicated trigger for hadronic decays of

heavy flavor mesons, the data were collected with a suite of
single and dimuon triggers. The trigger and off-line
streaming requirements bias the composition of the data.
The muon requirement will preferentially select events with
semileptonic decays and may enhance the contribution of
events produced by the decay of b hadrons. The effect of
this bias is corrected using a Monte Carlo (MC) simulation
(described below).
The D�

s → ϕπ�; ϕ → KþK− decay is reconstructed as
follows. Since the D0 detector is unable to distinguish
between charged K and π mesons, the two particles from
the ϕ decay are assumed to be kaons and are required to

have pT > 0.7 GeV=c, opposite charge, and a recon-
structed invariant mass of MðKþK−Þ < 1.07 GeV=c2.
The third particle, assumed to be the charged pion, is
required to have pT > 0.5 GeV=c. The three particles are
combined to create a common D�

s decay vertex using the
algorithm described in Ref. [15]. The cosine of the angle
between the D�

s momentum and the vector from the pp̄
collisions vertex to the D�

s decay vertex in the transverse
plane is required to be greater than 0.95. The trajectories of
the D�

s candidate tracks are required to be consistent with
originating from a common vertex and to have an invariant
mass of 1.7 < MðKþK−π�Þ < 2.3 GeV=c2. To reduce
combinatorial background, the D�

s vertex is required to
have a displacement from the pp̄ collision vertex in the
transverse plane with a significance of at least four standard
deviations.
To improve the significance of the D�

s selection, we
use a likelihood ratio [16] to combine several variables
that discriminate between signal and the combinatoric
background: the helicity angle between the D�

s and
K∓ momenta in the center-of-mass frame of the ϕ
meson; the isolation of the D�

s system, defined as
I ¼ j~pðD�

s Þj=½j~pðD�
s Þj þ Σj~pij�, where ~pðD�

s Þ is the vector
sum of the momenta of the three tracks that make up theD�

s
meson and Σj~pij is the sum of momenta of all charged
particles not associated with the D�

s meson in a cone of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔϕÞ2 þ ðΔηÞ2
p

< 0.5 around the D�
s direction [13]; the

χ2 of the D�
s vertex fit; the invariant mass MðKþK−Þ;

pTðKþK−Þ; the cosine of the angle between the D�
s

momentum and the vector from the pp̄ collision vertex
to the D�

s decay vertex, and the separation between the K�

and π� mesons with the same charge, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðϕK − ϕπÞ2 þ ðηK − ηπÞ2
p

. The signal is modeled using
a MC simulation ofD�

s → ϕπ� decays and the background
is modeled using the data (which is dominated by back-
ground events) before applying the likelihood selection.
The requirement on the likelihood ratio variable is chosen
to minimize the statistical uncertainty on ACP obtained
using the signal extraction procedure described below.
The MðKþK−π�Þ distribution is displayed in bins

of 6 MeV=c2 over a range of 1.7 < MðKþK−π�Þ <
2.3 GeV=c2, and the number of signal and background
events is extracted by a χ2 fit of an empirical model to the
data (Fig. 1). The D�

s meson mass distribution is well
modeled by two Gaussian functions constrained to have the
same mean, but with different widths and normalizations.
There is negligible peaking background under theD�

s peak.
A second peak in the MðKþK−π�Þ distribution corre-
sponding to the Cabibbo-suppressed D� → ϕπ� decay is
also modeled by two Gaussian functions with widths set to
those of the D�

s meson model scaled by the ratio of the
fitted D� and D�

s masses. The combinatoric background is
modeled by a fifth-order polynomial function. Partially
reconstructed decays such as D�

s → ϕπ�π0 where the π0 is
not reconstructed are modeled with a threshold function
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that extends to the D�
s mass after the π0 mass has been

subtracted, given by TðmÞ ¼ arctan ½p1ðmc2 − p2Þ� þ p3,
where pi are fit parameters. In the fit, p1 is fixed to the
value obtained from simulation while the other parameters
are allowed to vary.
The raw asymmetry [Eq. (2)] is extracted by fitting the

MðKþK−π�Þ distribution of the D�
s candidates using a χ2

minimization. The fit is performed simultaneously, using
the same models, on the sum (Fig. 1) and the difference
(Fig. 2) of the MðKþK−πþÞ distribution for the Dþ

s
candidates and the MðKþK−π−Þ distribution for the D−

s
candidates. The functions used to model the two distribu-
tions are

Wsum ¼ WDs
þWD þWcomb þWpart; (4)

Wdiff ¼ ADs
WDs

þ ADWD þ AcombWcomb þ ApartWpart; (5)

whereWDs
,WD,Wcomb, andWpart describe the D�

s and D�
mass peaks, the combinatorial background, and the parti-
ally reconstructed events, respectively. The asymmetry of
the D� mass peak is AD, Acomb is the asymmetry of the
combinatorial background, and Apart is the asymmetry of
the partially reconstructed events.

The result of the fit is shown in Figs. 1 and 2 with
a total χ2 ¼ 171 for 179 degrees of freedom corresponding
to a p value of 0.65. The number of signal events in
the sample is NðD�

s Þ ¼ 452013� 1866 and the fitted
asymmetry parameters are ADs

¼ ð−0.43� 0.26Þ%, AD ¼
ð−0.31� 0.67Þ%, Acomb ¼ ð0.46� 0.04Þ%, and Apart ¼
ð0.4� 2.1Þ%. The value of the background asymmetry,
Acomb, is consistent with approximately half the combina-
toric background being KþK−K� or K�πþπ− events with
an average kaon reconstruction asymmetry of 1%.
To test the sensitivity and accuracy of the fitting

procedure, the sign of the charge of the pion is randomized
in the data set used in the analysis to introduce an
asymmetry signal. We simulate a range of raw signals
with asymmetries from ADs

¼ −2.0% to þ2.0% in steps of
0.2%, and AD from −2.0% to þ2.0% in steps of 0.5%
with 1000 pseudoexperiments performed for each step.
Each pseudoexperiment is performed with the same sta-
tistics as the measurement. No significant systematic biases
are found, and the uncertainties are consistent with the
expectation due to the sample size.
Systematic uncertainties of the fitting method are evalu-

ated by varying the fitting procedure. The mass range of the
fit is shifted from 1.700 < MðKþK−π�Þ < 2.300 GeV=c2

to 1.724 < MðKþK−π�Þ < 2.270 GeV=c2 in steps of
6 MeV=c2 resulting in an uncertainty on the asymmetry
of 0.044%. The functions modeling the signal are modified
to fit the D� and D�

s mass peaks by single Gaussian
functions, the background is fitted by varying between a
fourth and seventh order polynomial function, and the
parameter p1 in the threshold function is allowed to vary.
This yields an uncertainty on the asymmetry of 0.008%.
The width of the mass bins is changed between 1 and
12 MeV=c2 resulting in an uncertainty of 0.033%. The
systematic uncertainty is assigned to be half of the maximal
variation in the asymmetry for each of these sources added
in quadrature. The total effect of these systematic sources of
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FIG. 1 (color online). The polarity-weighted ϕπ� invariant
mass distribution. The lower mass peak is due to the decayD� →
ϕπ� while the second peak is due to the D�

s meson decay.
Note the zero suppression on the vertical axis. The bottom panel
shows the fit residuals. The error bars represent the statistical
uncertainties.
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uncertainty is a systematic uncertainty of 0.056% on the
raw asymmetry ADs

.
As a cross-check, variations of the various asymmetry

models are also examined. The asymmetries introduced by
the functions used to model the threshold behavior and the
combinatoric background are set to the same value,
Acomb ¼ Apart. In a separate check the asymmetry of the
threshold function is set to zero. Given the statistical and
systematic uncertainties, the observed variations of 0.009%
can be neglected.
The residual detector tracking charge asymmetry has

been studied in Refs. [4,10,17] using K0
S → πþπ− and

K�� → K0
Sπ

� decays. After polarity weighting, no signifi-
cant residual track reconstruction asymmetries have been
found, and no correction for tracking asymmetries needs to
be applied. The tracking asymmetry of charged pions has
been found to be less than 0.05%, using MC simulations,
which is assigned as a systematic uncertainty.
Any asymmetry between the reconstruction of Kþ and

K− mesons cancels as we require that the two kaons form a
ϕ meson. However, there is a small residual asymmetry in
the momentum of the kaons produced by the decay of the ϕ
meson due to ϕ-f0ð980Þ interference [18]. The kaon
asymmetry is measured using the decay K�0 → Kþπ−
[10] and is used to determine the residual asymmetry
due to this interference, AKK ¼ ½−0.042� 0.023ðsystÞ�%.
The charge asymmetry introduced by requiring the

data to satisfy muon triggers needs to be included in the
overall detector asymmetry. The effect of the residual
reconstruction asymmetry of the muon system has been
measured using J=ψ → μþμ− decays as described in
Ref. [10]. This asymmetry is determined as a function of
pμ
T and jημj, and the final correction is obtained by a

weighted average over the normalized (pμ
T , jημj) yields, as

determined from fits to the MðKþK−π�Þ distribution. The
resulting correction is Aμ ¼ ½−0.036� 0.010ðsystÞ�%.
The combined residual detector asymmetry correction is

Adet ¼ Aμ þ AKK ¼ ½−0.078� 0.056ðsystÞ�%; (6)

which includes the 0.05% systematic uncertainty on the
residual asymmetry in track reconstruction. The remaining
corrections are the physics background asymmetries con-
tributing to Aphys, which are the only corrections extracted
from MC simulation. The D�

s signal decays can also be
produced in the decay chain of b hadrons. We assume that
the decays of excited D�

s states proceed via the strong and
electromagnetic interactions and do not introduce any CPV.
Most decays of B0

s mesons result in the production of a
D�

s meson. These can be grouped into three categories.
Semileptonic decays, B0

s → lþνD−
s X, have a nonzero time-

integrated flavor-specific semileptonic charge asymmetry
of assl ¼ ½−0.79� 0.43�% obtained by taking the average of
direct and indirect measurements [4,5,8–10]. The correc-
tion for this asymmetry is given by the product of the

fraction of D�
s events produced by semileptonic B0

s decays,
fB0

s
, and the fraction of B0

s events that have mixed, Fosc
B0
s
.

Since assl is proportional to ND−
s
− NDþ

s
, it has the opposite

sign to ADs
. The second category is made up of B0

s meson
decays to a pair of D�

s mesons which have no effect on the
measured value of ACP since equal numbers of Dþ

s and D−
s

are produced. The remaining category contains hadronic
decays producing one D�

s meson, B0
s → D�

s X. Since 93%
[9] of B0

s decays produce a D�
s meson, any net asymmetry

will be small. The contributions of this process to the
charge asymmetries in the production of D�

s mesons are
assumed to be small and are neglected.
The remaining b hadron decay processes that contribute

to ACP are B0
d → D�

s X, B� → D�
s X, and the small number

of b baryon and Bc meson decays. It is assumed that any
CPV in these decays has a negligible effect on the
measurement.
To determine Aphys, a MC sample is created using the

PYTHIA event generator [19] modified to use EVTGEN [20]
for the decay of hadrons containing b and c quarks. The
PYTHIA inclusive jet production model is used. Events
recorded in random beam crossings are overlaid on the
simulated events to emulate the effect of additional colli-
sions in the same bunch crossing. These events are
processed by the full simulation chain, and by the same
reconstruction and selection algorithms as used for data.
Events are selected that contain at least one D�

s → ϕπ�;
ϕ → KþK− decay. Each event is classified based on the
decay chain that is matched to the reconstructed particles.
The effects of trigger selection and track reconstruction

are estimated by weighting by the pT of the reconstructed
D�

s to match the distribution of the data. The trigger and
off-line streaming requirements are accounted for by
requiring a reconstructed muon in each of the MC events
and weighting the muons to match the pμ

T-η
μ distributions

of muons in the data. The weights are obtained by taking
the ratio of the muon pμ

T-η
μ distributions in the selected data

sample and a sample obtained using the zero-bias trigger
condition. These weights are then applied to the MC
simulation.
A large fraction of the data was collected at high

instantaneous luminosities, and there is some probability
that the muon and theD�

s candidate originate from different
proton-antiproton collisions. This probability is determined
by measuring the separation along the z axis of the
intersection of the D�

s trajectory and the track of the
highest pT muon in the event. The fraction of events that
come from separate pp̄ interactions is estimated to be
6.4%. This effect is accounted for in the simulation.
From these studies, the sample is predicted to be

composed of 71% D�
s mesons produced directly, 10%

from the hadronic decays of B0
s mesons (which includes

B0
s → D�ð�Þ

s D∓ð�Þ
s ), 6% each from the decay of B� and B0

d
mesons, and 1% from the decay of b baryons. The fraction
of events that originate from B0

s semileptonic decays is
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found to be fB0
s
¼ 5.8%, and the fraction of events that

have oscillated to be Fosc
B0
s
¼ 50%. In addition to the MC

statistical uncertainty, the systematic uncertainty on Aphys is
determined by varying the following quantities by their
uncertainties: the branching ratios and production fractions
of B and D mesons, the D- and B-meson lifetimes, and
ΔΓs. The largest sources of uncertainty is the fraction of
events in which a c quark forms a D�

s meson, fðc →
D�

s Þ ¼ 0.080� 0.017 [21], and the semileptonic branching
fraction of B0

s mesons, BðB0
s → lþνD−

s XÞ ¼ ð9.5�
2.7Þ%. The uncertainty on the correction due to assl is
0.024%, yielding an asymmetry resulting from the decay of
b hadrons into D�

s mesons of

Aphys ¼ ½0.023� 0.024ðsystÞ�%. (7)

Several consistency checks are performed by dividing
the data into smaller samples using additional selections
based on data-taking periods, magnet polarities, D�

s trans-
verse momentum, and D�

s pseudorapidity. The resulting
variations of ACP are statistically consistent with the results
of Eq. (8) (see below).
The selection criteria applied in this analysis preferen-

tially select the P-wave decay, D�
s → ϕπ�, over the

continuum process D�
s → KþK−π� and other processes

that result in a KþK−π� final state. In particular the helicity
angle between the D�

s and K∓ momenta in the center-of-
mass frame of the ϕ meson and the invariant mass
MðKþK−Þ used in the likelihood ratio select D�

s → ϕπ�
decays. To study the possible effect of other non-
P-wave contributions, these variables are removed from
the likelihood ratio and replaced with the require-
ment 1.01 < MðKþK−Þ < 1.03 GeV=c2. The analysis
is reoptimized, and the asymmetry is found to be
½−0.63� 0.35ðstatÞ � 0.08ðsystÞ�% which is consistent
with the main analysis and with the SM expectation of
zero CPV.
The systematic uncertainty due to the fitting procedure

(0.056%) added in quadrature with the uncertainties on Adet
(0.056%) and Aphys (0.024%) results in a total systematic
uncertainty of 0.08%. The direct CP-violating charge
asymmetry in D�

s mesons is found to be

ACP ¼ ½−0.38� 0.26ðstatÞ � 0.08ðsystÞ�%; (8)

corresponding to a total absolute uncertainty of 0.27%.
This is the most precise measurement of direct CPV in the
decay D�

s → ϕπ�, and the result is in agreement with the
SM expectation of zero CPV in this decay.
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