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Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory,
with sixmassless Dirac fermions in the fundamental representation.We compute the running gauge coupling
derived nonperturbatively from the Schrödinger functional of the theory, finding no evidence for an infrared
fixed point up through gauge couplings ḡ2 of order 20. This implies that the theory either is governed in the
infraredbyafixedpointofconsiderablestrength,unseensofar innonsupersymmetricgaugetheories,orbreaks
its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the
number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior.
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Introduction.—A new sector, described by a strongly
interacting gauge theory, could play a key role in physics
beyond the standard model. With the recent discovery of a
125 GeV Higgs-like scalar [1,2], SU(2) vectorlike gauge
theories provide attractive candidates. Because of the pseu-
doreality of the fundamental representation of SU(2), two-
color theories with Nf massless Dirac fermions in this
representation have an enhanced chiral symmetry, a novel
symmetrybreakingpatternSUð2NfÞ → Spð2NfÞ, and, there-
fore, a relatively large number of Nambu-Goldstone bosons
(NGBs) [3,4].This featurehasmotivatedSU(2)-basedmodels
of a composite Higgs boson [5,6] and of dark matter [7–9].
These models take Nf ¼ 2, but new intriguing possibil-

ities emerge for larger Nf. With Nf just below the value at
which asymptotic freedom is lost, a conformal window
opens up, with the theory initially governed by a weakly
coupled infrared fixed point (IRFP). As Nf is decreased,
the strength of the fixed point increases. Below some
critical value Nc

f, chiral symmetry is broken and the theory
confines. This critical value defines the lower edge of the
conformal window [10,11]. Knowing the extent of the
window and the behavior of theories in it and near it could
be crucial for building a successful model of beyond the
standard model physics.
The extent of the conformal window is also interesting

from a more theoretical point of view, and this is

particularly true of the two-color theory. For example, a
general notion about quantum field theories, as first applied
to second-order phase transitions and critical phenomena, is
that the renormalization group flow toward the infrared (IR)
should result in a thinning of the degrees of freedom. This
can provide an important constraint on IR behavior if it can
be shown that the IR count cannot exceed the UV count.
One implementation of this idea, much studied recently
[12,13], defines the degree-of-freedom count through the
coefficient a entering the trace of the energy momentum
tensor on an appropriate space-time manifold. Although an
UV-IR inequality can perhaps be proven, it does not seem
to lead to useful constraints.
Another approach [14] defines the degree-of-freedom

count via the thermodynamic free energy FðTÞ, using the
temperature T as the renormalization group scale. The
dimensionless quantity fðTÞ≡ 90FðTÞ=π2T4 is T inde-
pendent for a free massless theory, leading to
f ¼ 2NV þ ð7=2ÞNF þ NS, where NV , NF, and NS count
the gauge, Dirac-fermion, and real-scalar fields. The con-
jectured inequality of Ref. [14] is that for an asymptotically
free theory, fIR ≡ fð0Þ ≤ fUV ≡ fð∞Þ.
In the case of an IR phase with broken chiral symmetry

and confinement, fIR counts the number of NGBs. For a
vectorlike SUðNÞ gauge theory with N ≥ 3 and Nf
Dirac fermions, this count is N2

f − 1. Also, in the UV,

PRL 112, 111601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

0031-9007=14=112(11)=111601(5) 111601-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.111601
http://dx.doi.org/10.1103/PhysRevLett.112.111601
http://dx.doi.org/10.1103/PhysRevLett.112.111601
http://dx.doi.org/10.1103/PhysRevLett.112.111601


NV ¼ N2 − 1 and NF ¼ NNf. The above inequality then
demands Nc

f < 1
4
ð7N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81N2 − 16

p
Þ. This is a testable

constraint, and it has been satisfied by recent lattice
simulations [15]. For N ¼ 2 on the other hand, the
enhanced chiral symmetry, the different pattern of sym-
metry breaking, and the resultant enhanced NGB
count (2N2

f − Nf − 1) [3] lead to a significantly reduced
bound on Nf for the broken phase: Nc

f < ð4þffiffiffiffiffi
30

p Þ=2 ≈ 4.7.
Crude estimates of the edge of the conformal window,

based on quasiperturbative methods, also exist. Gap-
equation methods [16], for example, lead to the estimate
Nc

f ≈ 4N. While this is nicely compatible with the inequal-
ity for N ≥ 3, it clearly disagrees with it for N ¼ 2. This
tension suggests that the Nf ¼ 6 theory could be particu-
larly worthy of study.
Early lattice calculations attempted to explore the two-

color conformal window by studying the lattice theory at
strong bare coupling [17,18]. Recent efforts have primarily
searched for an IRFP with nonperturbative running cou-
pling calculations. Evidence that Nf ¼ 10 (Nf ¼ 4) is
inside (outside) the conformal window is presented in
Ref. [19]. Additionally, Ohki et al. argue that Nf ¼ 8 is
inside the conformal window [20]. The case Nf ¼ 6,
arguably the most interesting, while tackled by many
groups [19,21–24], has remained inconclusive.
Here we study the Nf ¼ 6 theory, drawing on larger

computational resources than in all previous work, to
determine whether Nf ¼ 6 has an IRFP by calculating the
Schrödinger functional (SF) [25] running coupling. We use
the stout-smeared [26]Wilson fermion action, which avoids
coupling the fermions tounphysical fluctuationsof thegauge
field on the scale of the lattice spacing. Smeared actions have
also been used in SF running coupling studies of other
theories [27,28].
Preliminaries.—A stout-smeared fermion action repla-

ces “thin” gauge links by “fat” links which are averaged
with nearby gauge links. It has the advantage that it is
analytic and can therefore be used in conjunction with
molecular dynamics updating schemes such as Ref. [29].
The formulas required to implement this smearing pro-
cedure in a molecular dynamics algorithm are derived for
the case of SU(3) links in Ref. [26]. We have derived the
relevant formulas for the SU(2) case. Recently, another
group implemented two-color stout smearing as well [30].
We use only one level of stout smearing with an isotropic

smearing parameter ρ ¼ 0.25 [26]. In preliminary work
[23], we show that this degree of smearing reduces lattice
artifacts and allows us to reach stronger running couplings,
but still not be in the vicinity of an unphysical bulk phase
transition that could distort our results. As all calculations
in this work are done with Dirichlet boundary conditions
(BCs) in the time directions, there is some ambiguity in
how to implement the smearing of the gauge field near this
boundary. We choose to not smear the boundary links with

bulk links and vice versa. This choice results in a simpler
running-coupling observable.
The Wilson fermion action contains an additional irrel-

evant operator that lifts the mass of the fermion doublers to
the cutoff scale so they decouple from the calculation. This
lattice artifact explicitly breaks chiral symmetry, and as a
result the fermion mass is additively renormalized. The
bare mass m0 therefore must be carefully tuned in order to
restore chiral symmetry. The critical value of the bare mass
(as a function of the bare coupling)mcðg20Þ is defined as the
bare mass value that results in a zero renormalized quark
mass [31]. In practice,mc is determined, at fixed bare gauge
coupling g20 and lattice volume ðL=aÞ3 × 2L=a, as the root
of a fitted linear function to measurements of the renor-
malized quark mass vs the bare quark mass. This is done for
a range of bare couplings and lattice volumes and the
results are fit to a polynomial given by

mfit
c

�
g20;

a
L

�
¼

X7
i¼1

g2i0

�
ai þ bi

�
a
L

��
. (1)

Then, mfit
c ðg20; 0Þ is used in the running coupling calcu-

lations [32]. All data used to fitmfit
c ðg20; a=LÞ andmfit

c ðg20; 0Þ
are shown in Fig. 1.
In order to guarantee thatwe can take a continuumlimit,we

need to obtain data only from the weak-coupling side of any
spurious lattice phase transition. With this in mind, we scan
through the bare parameter space and locate peaks in the
plaquette susceptibility on a L=a ¼ 10 lattice. This search
indicatesalineinthem0-g20 planeoffirstorderphasetransitions
that endsat a critical point at aroundg20 ≈ 2.2. Forg20 ≲ 2.2,we
see crossover behavior. InFig. 1,we show theabove transition
line plotted along withmfit

c ðg20; 0Þ. Figure 1 indicates that our
action has a sensible continuum limit only for g20 ≲ 2.175.
Therefore, we examine the running coupling only on lattices
with a bare coupling within this range.

FIG. 1 (color online). Bare masses that result in zero partially
conserved axial current mass at various lattice volumes. All data
points fit tomfit

c ðg20; aLÞ and the continuum extrapolationmfit
c ðg20; 0Þ

(black dashed line) are shown.mfit
c ðg20; 0Þ determines masses used

in running coupling simulations. Additionally the peak in the
plaquette susceptibility (turquoise x’s) is shown.
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Running coupling.—To define a nonperturbative renor-
malized coupling, we employ the Schrödinger functional
[25]. It is given by a path integral over gauge and fermion
fields that residewithin a four-dimensional Euclidean box of
spatial extent L with periodic BCs in spatial directions and
Dirichlet BCs in the time direction. We choose gauge BCs
[33], Uðx; kÞjx0¼0 ¼ exp ½−iη a

L τ3� and Uðx; kÞjx0¼L ¼
exp ½−iðπ − ηÞ a

L τ3�, and fermion BCs [34], Pþψ jx0¼0 ¼
ψ̄P−jx0¼0 ¼ P−ψ jx0¼L ¼ ψ̄Pþjx0¼L ¼ 0. These BCs
classically induce a constant chromoelectric background
field whose strength is characterized by the dimensionless
parameter η. With these BCs the SF is given
by Zðη; LÞ ¼ R

D½U;ψ ; ψ̄ �e−S½U;ψ ;ψ̄ ;η�.
The running coupling is then defined by,

k
ḡ2ðg20; LaÞ

¼ ∂
∂η logZ

����
η¼π=4

¼
�∂S
∂η

�
; (2)

with k ¼ −24ðL=aÞ2 sin ½ða=LÞ2ðπ=2Þ� so that the renor-
malized coupling agrees with the bare coupling at tree
level. The first two perturbative coefficients of the SF beta
function are the universal coefficients given in Ref. [10].
This renormalization scheme has the virtue that it is fully
nonperturbative and it is amenable to a lattice calculation.
We calculate the SF renormalized coupling over a range

of bare couplings and lattice volumes [32]. Lattice pertur-
bation theory gives g20=ḡ

2 as an expansion in powers of g20.
This motivates an interpolating fit [35],

1

g20
−

1

ḡ2ðg20; LaÞ
¼

XNL=a

i¼0

ai;L=ag2i0 . (3)

We choose the lowest possible NL=a to give a
reasonable χ2 per d.o.f. (in practice, values in the
range χ2=d:o:f: ∈ ½0.7; 1.5�), finding NL=a≤12 ¼ 6 and
NL=a>12 ¼ 5. This procedure produces smooth functions,
oneforeachlatticevolumeL=a,of therenormalizedcoupling
vs the bare coupling. Before using this interpolation for
further analysis, it is worth noting that there is no hint of an
IRFP in the lattice data and therefore in the interpolating
curves.At any fixed g20, the running coupling ḡ

2ðg20; LaÞ is seen
only to increase as a function ofL=a in the range of the data.
The question is whether a careful continuum extrapola-

tion will indicate otherwise. A step scaling [36] analysis
allows us to address this issue and to study the renormalized
coupling over a large range of scales in a computationally
feasible manner. The continuum step scaling function
σðu; sÞ is defined by

Z
σðu;sÞ

u

dḡ2

βðḡ2Þ ¼ 2 log s. (4)

It is the renormalized coupling at a length scale sL given
that the running coupling ḡ2 ¼ u at a length scale L. On the
lattice we calculate the discrete step scaling function,

Σ
�
u;

a
L
; s

�
≡ ḡ2

�
g20� ;

sL
a

�����
ḡ2ðg2

0� ;L=aÞ¼u
. (5)

We arrive back at a continuum step scaling function by
taking the continuum limit:

σðu; sÞ ¼ lim
a=L→0

Σ
�
u;

a
L
; s

�
. (6)

From here we use s ¼ 2 and drop reference to this from our
notation.
To extract σ as a function of u, we first use the

interpolating fits, given by Eq. (3), to evaluate Σ at each
fixed value of u and integer L=a ¼ 5–10 and 12. We take
the continuum limit, at each u independently, by fitting
Σðu; a=LÞ to a polynomial in a=L, and extrapolating to
a=L → 0. Our result, shown in Fig. 2, displays several plots
of the quantity ½σðuÞ − u�=u vs u. This quantity is a finite-
difference version of the continuum beta function. In one
curve (red), we fit Σðu; a=L ≤ 1=6Þ to a quadratic poly-
nomial and then extrapolate the result to a=L → 0.
Additionally, we show, Σðu; a=L ≤ 1=5Þ extrapolated from
a cubic polynomial fit (green). We see that these two curves
are consistent, but the errors of the cubic extrapolation
become large at u ≈ 8. The remaining (blue) curve is
obtained with a constant extrapolation to the continuum
using only the three points with a=L ≤ 1=9.
To assess the goodness of fit of any particular functional

form for continuum extrapolation of Σ we examine
χ2=d:o:f. over the entire range of u. For the constant
extrapolation (blue) in Fig. 2 for L=a ≥ 9, χ2=d:o:f. varies
from 0.5–2. A quadratic extrapolation (red) for L=a ≥ 6
and a cubic extrapolation for L=a ≥ 5 have comparable
χ2=d:o:f. ranging from 0.5–4 throughout the range of u.

FIG. 2 (color online). ½σðuÞ − u�=u vs u for three different
extrapolations to the continuum. A contour at ḡ2 ¼ 20 is shown to
provide a measure of the strength of renormalized coupling
explored here. The 2-loop perturbative result is also shown here
(dot-dashed magenta line).
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The constant (quadratic and cubic) extrapolation relies on
fits with two (three) degrees of freedom.
These various extrapolations all perform well at repro-

ducing the perturbative two-loop curve (magenta) at small
values of u. If the resulting curves were to cross zero at
some larger u, this would be indicative of an IRFP. We see
no indication of this; in fact we see, regardless of which
extrapolation we use, the running coupling grow up to and
beyond estimates of the critical coupling required to induce
spontaneous chiral symmetry breaking [16]. We see no
evidence even of an inflection point, which would hint at an
IRFP at a stronger coupling strength. Indeed these curves
are qualitatively similar to, although much more slowly
running than, the σðuÞ of quantum chromodynamics.
We next compare these three continuum extrapolations

more carefully and comment also on extrapolation via a
linear polynomial in a=L. For each u, Σðu; a=LÞ, evaluated
at L=a ¼ 5–10 and 12, is fit to a cubic polynomial,
pða=LÞ ¼ P

3
i¼0 αiða=LÞi. For several values of a=L, the

relative sizes of the constant, Oða=LÞ, Oða=LÞ2, and
Oða=LÞ3 terms in the polynomial are plotted vs u. We
can then assess the validity of some truncation of the
polynomial continuum extrapolation within some window
in a=L. We show the results of such an analysis in Fig. 3 for
L=a ¼ 6, 9, and 12. A number of interesting features are
evident. At weak coupling the lattice artifacts are small, and
a constant extrapolation adequately describes the con-
tinuum limit. But at intermediate and strong coupling
(u ≳ 6), lattice artifacts become significant. Throughout
the coupling range, the linear and quadratic lattice artifacts

are comparable for a=L ≥ 1=9 and hence we cannot
perform a reliable linear extrapolation to the continuum.
The cubic contribution, however, is small for a=L ≤ 1=6
and u ≲ 8, indicating that a quadratic extrapolation to the
continuum is reliable at least up to this input coupling
strength. This indicates that the running coupling reaches a
ḡ2 of order 20 without encountering an IRFP.
Insight may also be gleaned by plotting the extrapolation

to the continuum at fixed coupling strength u. We show in
Fig. 4 the example of u ¼ 7.5. We plot Σðu; a=LÞ vs a=L,
along with a quadratic and cubic polynomial fit, as well as a
constant extrapolation based on the three smallest a=L
values. These correspond to the fits used in Fig. 2. Figure 4
demonstrates that a constant extrapolation to the continuum
is reasonable. Taking the larger a=L points into account
shows the presence of significant nonlinear lattice artifacts,
in fact suggesting that the constant extrapolation signifi-
cantly underestimates σðuÞ for u≳ 7. It is also evident that
the quadratic and cubic fits extrapolate to a value of σ that is
well above the smallest-a=L points. It is likely that the true
extrapolated value is somewhere between the constant and
quadratic extrapolations.
Recently, Hayakawa et al. have claimed to see evidence

of an IRFP in the two-color six-flavor theory [24]. They
employ the SF method as we do but with the unimproved
Wilson fermion action and a linear extrapolation to the
continuum. It is reasonable to expect that for large enough
L=a the linear term will be the dominant lattice artifact but
it is difficult to quantify how large an L=a is necessary
outside of perturbation theory. Other extrapolation forms,
including quadratic terms can be used to fit their data with a
comparable or slightly better χ2=d:o:f: When this is done,
we cannot conclude that an IRFP exists. Moreover, from
our data set, sampling many more bare couplings and
lattice volumes, we are able to study the relative contri-
butions of different lattice artifacts. In Fig. 3, we see that in
the strong coupling regime, the quadratic term becomes

FIG. 4 (color online). Plot of Σðu ¼ 7.5; a=LÞ vs a=L with
various extrapolations to the continuum. The continuum
limit of the quantity is obtained by fitting these points to a
polynomial in a=L.

FIG. 3 (color online). Plots of relative magnitudes of low order
contributions to the continuum extrapolation. We fit s ¼ 2 steps
at L=a ¼ 5–10 and 12 to a polynomial

P
3
i¼0 αiða=LÞi. Then

jα0j=T (blue line), jα1ða=LÞj=T (red dashed line), jα2ða=LÞ2j=T
(green dotted line), and jα3ða=LÞ3j=T (cyan dot-dashed line) are
plotted vs u, at various values of a=L, with T ¼ P

3
i¼0 jαiða=LÞij.
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significant in thea=L rangestudiedbyHayakawaetal.andby
us. This suggests that concluding the existence of an IRFP
from a linear extrapolation to the continuum is premature.
To summarize, for an SU(2) gauge theory with six

massless fermions in the fundamental representation, we
find no evidence of an infrared fixed point in the running
gauge coupling as defined in the Schrödinger functional
scheme. Our simulations reach well into a strong-coupling
range, potentially capable of triggering chiral symmetry
breaking and confinement. We conclude that this theory
eitherflowstoaverystronginfraredfixedpoint,so-farunseen
in nonsupersymmetric theories, or it breaks chiral symmetry
and confines, producing a large number (65) of Nambu-
Goldstone bosons, well above the number of underlying
fermionic and gauge degrees of freedom. Thus either of
these (zero-temperature) phases exhibits novel behavior. In
the latter case, since the Stefan-Boltzmann value fUV would
lie below fIR, the finite-temperature phase transition would
have features distinctly different from quantum chromody-
namics. We could in principle probe even larger couplings
than presented here, but the computational challenges and
lattice-artifact difficulties grow with coupling strength.
Other approaches will be important to firmly establish the
infrared nature of this theory.
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