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We report on the search for a CPT- and Lorentz-invariance-violating coupling of the 3He and 129Xe
nuclear spins (each largely determined by a valence neutron) to posited background tensor fields that
permeate the Universe. Our experimental approach is to measure the free precession of nuclear spin
polarized 3He and 129Xe atoms in a homogeneous magnetic guiding field of about 400 nT using LTC

SQUIDs as low-noise magnetic flux detectors. As the laboratory reference frame rotates with respect to
distant stars, we look for a sidereal modulation of the Larmor frequencies of the colocated spin samples. As
a result we obtain an upper limit on the equatorial component of the background field interacting with the
spin of the bound neutron ~bn⊥ < 8.4 × 10−34 GeV (68% C.L.). Our result improves our previous limit (data
measured in 2009) by a factor of 30 and the world’s best limit by a factor of 4.
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A great number of laboratory experiments have been
designed to detect diminutive violations of CPT and
Lorentz invariance. Unlike Michelson-Morley-type experi-
ments [1–3], Hughes-Drever experiments [4,5] test the
isotropy of the interactions of matter itself. Searches for an
anomalous spin coupling to a posited relic background field
that permeates the Universe have been performed with
electron and nuclear spins with increasing sensitivity
[6–18]. The theoretical framework presented by A.
Kostelecký and colleagues parametrizes the general treat-
ment of CPT and Lorentz-invariance violating (LV) effects
in a Standard Model extension (SME) [19–21]. The SME
framework was conceived to facilitate experimental inves-
tigations of Lorentz and CPT symmetry, given the theo-
retical motivation for violation of these symmetries.
Although Lorentz-breaking interactions are motivated by
models such as string theory [21,22], loop quantum gravity
[23–26], etc., the low-energy effective action appearing in
the SME is independent of the underlying theory. The SME
contains a number of possible terms that couple to the spins
of fundamental Standard Model particles like the electron,
or composite particles like the proton and (bound) neutron.
These terms are small due to Planck-scale suppression
(Mp), and in principle are measurable in experiments
by detecting tiny energy shifts of order ΔEðnÞ∼
ðmw=MpÞnmw, where the low-energy scale is set by the
mass mw of the particle. Since n ¼ 1 is largely ruled out by
present experiments [27], tuning the measurement sensi-
tivity to second-order effects (n ¼ 2) in Planck scale
suppression is the current challenge. (For the neutron
(mn ¼ 939 MeV) this is ΔEð2Þ ≈ 10−38 GeV). To deter-
mine the leading-order effects of a LV potential V, it

suffices to use a nonrelativistic description for the particles
involved given by

V ¼ − ~bwJ · σwJ ðwith J ¼ X; Y; Z; w ¼ e; p; nÞ: (1)

This can be interpreted as a coupling of the electron, proton
or neutron spin σwJ to a hypothetical background field ~bwJ .
The most sensitive tests so far were performed on the bound
neutron using a 3He-129Xe Zeeman maser [12,13], a
3He-129Xe comagnetometer [28] based on free spin pre-
cession, and a K-3He comagnetometer [7]. The latter one so
far gave the highest energy resolution of any spin
anisotropy experiment.
The experiment described here is a continuation of our

year 2009 measurements [28] with some essential improve-
ments (see below) and is based on the detection of freely
precessing nuclear spins of polarized 3He and 129Xe gas
with SQUIDs as low-noise magnetic flux detectors. Like in
[12,13], we search for sidereal variations of the frequency
of colocated spin species, while the Earth, and hence the
laboratory reference frame, rotates with respect to distant
stars. The 3He-129Xe comagnetometer has been described
in detail in [28–31]. Briefly, we used a LTC dc-SQUID
magnetometer system inside the strongly magnetically
shielded room BMSR-2 at PTB Berlin [32] (latitude
Θ ¼ 52.52°). A homogeneous magnetic guiding field B0

of about 400 nT was provided by two square coil pairs
which were arranged perpendicular to each other in order to
manipulate the sample spins, e.g., π=2 spin-flip by non-
adiabatic switching. The 3He and 129Xe nuclear spins were
polarized outside the shielding by means of optical pump-
ing. Low-relaxation spherical glass vessels (R ¼ 5 cm)
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were filled with the polarized 3He and 129Xe gases and
placed below the Dewar housing the SQUID sensors,
which detect the sinusoidal change in magnetic flux due
to the spin precession of the gas atoms. In order to obtain a
high common mode rejection ratio, gradiometric sensor
arrangements (four in total) were used. Typically,
the optimum conditions in terms of long transverse
relaxation times (T�

2) and high signal-to-noise ratio
(SNR) were met at a gas mixture with pressures of
ð3He; Xeð91%129XeÞ;N2Þ ¼ ð3; 5; 25Þ mbar. Nitrogen
was added as buffer gas to suppress spin-rotation coupling
in bound Xe-Xe van der Waals molecules [33,34]. In total
seven measurement runs (j ¼ 1;…; 7) with free spin
precession were performed, each lasting about one day.
The angle between the magnetic guiding field and the
north-south direction was ρ1 ¼ 208° for runs j ¼ 1, 2, 3
and ρ2 ¼ 73° for runs j ¼ 4;…; 7. The recorded
signal is a superposition of the 3He and 129Xe precession
signals at Larmor frequencies ωHe ¼ γHeB0 ≈ 2π ×
13.0 Hz and ωXe ¼ γXeB0 ≈ 2π × 4.7 Hz (ðγHe=γXeÞ ¼
2.75408159ð20Þ [35,36]). Analogue to other experiments
with high precision in frequency or phase determination
[37] phases of subdata sets were analyzed: the data of each
run were divided into sequential time intervals of τ ¼ 3.2 s.
The number Nj of obtained subdata sets laid between
20000 and 28000 corresponding to observation times Tj of
coherent spin precession in the range of 18 h to 25 h. For
each subdata set (i) a χ2 minimization was performed, using
the fit function

AiðtÞ ¼ Ai
He sin ðωi

HetÞ þ Bi
He cos ðωi

HetÞ
þ Ai

Xe sin ðωi
XetÞ þ Bi

Xe cos ðωi
XetÞ þ ci0 þ ci1t; (2)

with a total of eight fit parameters. Within the relatively
short time intervals, the term ci0 þ ci1t represents the
adequate parametrization of the SQUID gradiometer offset
showing a small linear drift due to the elevated 1=f noise at
low frequencies (< 1 Hz) [29]. On the other hand, the
chosen time intervals are long enough to have a sufficient
number of data points (800) for the χ2 minimization. The
sum of sine and cosine terms are chosen to have linear
fitting parameters (except ωHe and ωXe) with orthogonal
functions. The reduced χ2 (χ2=d.o.f.) of most subdata sets
is close to 1 which is consistent with the assigned
uncertainty to each data point of �16 fT (1σ), typically.
The initial signal amplitudes were up to 10 pT (Xe) and
20 pT (He). For each subdata set we finally obtain numbers
for the respective fit parameters Ai

He, B
i
He, A

i
Xe, B

i
Xe, ω

i
He,

ωi
Xe including their uncertainties. The subdata set phases

are then calculated using

φi ¼ arctanðBi=AiÞ: (3)

The accumulated phases for helium and xenon at the times
t ¼ i · τ are then determined by adding appropriate multi-
ples of 2π. After one day of measurement, the accumulated

phase for 3He is ΦHe ≈ 7 × 106 rad, for example. In the
next step the weighted phase difference ΔΦðt ¼ iτÞ is
calculated with

ΔΦ ¼ ΦHe − γHe

γXe
· ΦXe: (4)

By that measure the Zeeman term is eliminated and thus
any dependence on fluctuations and drifts of the magnetic
guiding field, i.e., ΔΦ ¼ const. However, nonmagnetic
spin interactions, like the one of Eq. (1), do not drop
out and we expect a sidereal modulation of the weighted
phase difference, i.e., ΔΦ ∝ sinðΩstþ φÞ, that allows us to
distinguish between a normal magnetic field and an
anomalous field coupling ½Ωs ¼ 2π=ð23h∶56min∶4.091sÞ
is the angular frequency of the sidereal day]. On a closer
inspection, the effect of Earth’s rotation (i.e., the rotation of
the SQUID detectors with respect to the precessing spins) is
not compensated by comagnetometry as well as frequency
shifts due to the Ramsey-Bloch-Siegert (RBS) shift [38,39].
The latter one gives the shift in Larmor frequency ωL due to
a rotating field with amplitude B1 and frequency ωD.
Related to our case, this is generated by the precessing
magnetization of the polarized gas,

δωRBSðtÞ ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δω2 þ γ2B2
1ðtÞ

q
− Δω

�
; (5)

with Δω ¼ jωL − ωDj. The plus sign applies to
ðωD=ωLÞ < 1, the minus sign to ðωD=ωLÞ > 1, respec-
tively. Two effects contribute to the RBS shift and have to
be taken into account, i.e., cross-talk (ct) and self-shift (ss).
(i) Concerning cross-talk, i.e., the coupling of the 3He and
129Xe magnetic moments among each other, Δω ≫ γB1

holds. For a precessing spherical spin sample with mag-
netization ~MðtÞ we have j ~B1ðtÞj ¼ ð2μ0=3Þj ~MðtÞj ¼
j ~B1ð0Þj · expð−t=T�

2Þ for the magnetic field produced inside
the sample cell [40] and expressions for the weighted phase
difference [Eq. (4)] can be calculated by integrating over
time:

ΔΦct
RBSðtÞ ¼ FHee

−ð2·t=T�
2;XeÞ − FXee

−ð2·t=T�
2;HeÞ

¼ −γ2HeB
2
1;Xeð0ÞT�

2;Xe

4Δω
e−ð2·t=T�

2;XeÞ

þ γHeγXeB2
1;Heð0ÞT�

2;He

4Δω
e−ð2·t=T�

2;HeÞ (6)

The magnetic field inside the sample cell B1ðtÞ can be
determined by analyzing the signal of the SQUID magne-
tometers which directly measure the magnetic dipole field
outside the spherical sample cell at their respective posi-
tions. The uncertainty in the determination of B1ð0Þ is in
the order of 5%, resulting in uncertainties of ΔΦct

RBS of

about 10%. Taking into account the uncertainties on FðjÞ
He

and FðjÞ
Xe, the final fitting procedure was not a basic χ2

minimization, but a maximization of the likelihood L
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including the Gaussian probability distributions for FðjÞ
He

and FðjÞ
Xe [41]. In contrast, the characteristic time constants

T�
2 of the exponential decay of the precession signals as

well as the Larmor frequencies could be determined with
high precision, so that they enter as fixed values into the
fitting procedure. (ii) For the self-shift, i.e., coupling of the
precessing magnetic moments of the same spin species,
Δω ≪ γB1 holds with δωRBSðtÞ ∝ γB1ðtÞ ∝ exp ð−ðt=T�

2ÞÞ
and for the corresponding expression of the weighted phase
difference, we get

ΔΦss
RBSðtÞ ¼ EHee

−ðt=T�
2;HeÞ − EXee

−ðt=T�
2;XeÞ: (7)

B1ðtÞ, in turn, depends on the source strength and thus must
show the time dependence of the signal amplitude
[∝ expð−t=T�

2Þ]. However, the proportionality factor
strongly depends on the field gradients across the sample
cell, the resulting diffusion coefficients for 3He and 129Xe
in the gas mixture, and the geometry of the sample cell [29].
During the duration of a single run (j), these parameters are
sufficiently constant, so that only the time dependence of
the signal amplitude enters. Since we have no precise
enough model to calculate the amplitudes of ΔΦss

RBS, EHe
and EXe must be kept as free fit parameters. If there is no
sidereal variation of the 3He and 129Xe frequencies induced
by LV couplings, then the time dependence of the weighted
phase difference can be described best by the fit model

ΔΦcðtÞ ¼
8<
:

ΔΦð1Þ
d ðtÞ for t0;1 ≤ t ≤ ðt0;1 þ N1τÞ

..

.

ΔΦð7Þ
d ðtÞ for t0;7 ≤ t ≤ ðt0;7 þ N7τÞ;

(8)

with

ΔΦðjÞ
d ðtÞ¼ΦðjÞ

0 þΔωðjÞ
lin ðt− t0;jÞ

þEðjÞ
Hee

ð−ðt−t0;jÞ=T�ðjÞ
2;HeÞ−EðjÞ

Xee
ð−ðt−t0;jÞ=T�ðjÞ

2;XeÞ

−FðjÞ
Xee

ð−2ðt−t0;jÞ=T�ðjÞ
2;HeÞ þFðjÞ

Hee
ð−2ðt−t0;jÞ=T�ðjÞ

2;XeÞ; (9)

where t0;j is the starting time of the corresponding run (j)
(with t ¼ 0 at 15∶35 UTon March 7, 2012) [42]. As for the

RBS amplitudes, it is generally found that jEðjÞ
HeðXeÞj ≫

jFðjÞ
HeðXeÞj. (In [28] the contribution of the cross-talk could

be neglected due to the lower SNR (∼B1).) Fitting the data
for the weighted phase difference to Eq. (9) and subtracting
the fit function, results in the phase residuals as shown in
Fig. 1(b). Due to the exponential decrease of the 3He and
129Xe signal amplitudes (in particular the xenon amplitude)
the residual phase noise rises in time [σres ∝ expðt=T�

2;XeÞ].
In order to demonstrate that the time dependence of the
RBS shift is known with sufficient precision, Figure 1(a)
shows the weighted phase difference after subtraction of all
linear terms in the fit model of Eq. (9) (including the linear

terms from the Taylor expansion of the exponential
functions of the RBS phases). For the seven measurement
runs, an almost parabolic dependence of the residual RBS
shifts (dominated by the quadratic term in the Taylor
expansion) is the finding. Besides strong variations of
the RBS amplitudes from run to run, a sign change is
observed from run (j ¼ 4) on, i.e., where the magnetic
guiding field with respect to its north-south orientation was
rotated. This resulted in slightly different field gradients
across the sample cell, i.e., superposition of gradients of the
applied field and residual field inside BMSR-2 [30,43,44].
The reduction of these structures by three orders of
magnitude (see Fig. 1) indicates that the time structure
of the RBS effects is well under control. Assuming
Gaussian noise, the uncertainty in the phase determination
and thus the measurement sensitivity increases according to
the Cramer Rao Lower Bound (CRLB) with σΦ ∝
T−ð1=2ÞSNR−1CðT; T�

2Þ [29,30,41]. T is the observation
time of coherent spin precession and CðT; T�

2Þ is a factor
which takes into account the exponential decay of the
signal amplitude with the transverse relaxation time T�

2

[29]. The Allan standard deviation (ASD) [29,45] is the
most convenient measure to study the temporal
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FIG. 1. (a) Weighted phase differenceΔΦ (data bin: 320 s) after
subtraction of the linear terms ΔΦlin in Eq. (9). The remaining
parabolic shaped structure is the contribution of the RBS shift (in
particular the self-shift). (b) Phase residuals after subtraction of
the entire fit model ΔΦc according to Eqs. (8) and (9). The time
evolution of the phase noise is caused by the exponential decay of
the signal amplitudes. Note that the phase noise is much less than
the symbol size in (a).
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characteristics of our 3He-129Xe comagnetometer and to
identify the power-law model of the phase noise under
study. Taking the phase residuals from Fig. 1(b), the
behavior of the phase uncertainty in the ASD plot is shown
in Fig. 2. Indeed, the observed phase fluctuations decrease
as ∝ τ−1=2 indicating the presence of white phase noise.
After one day of coherent spin precession, the uncertainty
in the weighted phase difference is σuncorr ≈ 10 μrad,
typically. The gain in measurement sensitivity compared

to the year 2009 measurements mainly arises from two
improvements: Firstly, the SNR could be increased by a
factor of 4 thanks to the higher xenon polarization of PXe ≈
40% and the use of four independent gradiometers.
Furthermore, with the larger size of our spherical glass
cells, the longitudinal wall relaxation time which scales like
T1;wall ∝ R could be improved by a factor of 2 for both gas
species, i.e., THe

1;wall ≈ 165 h and TXe
1;wall ≈ 15 h. In particular

for xenon, that resulted in a significant increase of the
transverse relaxation time of T�

2;Xe ≈ 8.5 h compared to
T�
2;Xe ≈ 4.5 h in 2009 [29]. Thus, coherent spin precession

could be monitored for more than 24 hours (≈3 · T�
2;Xe),

whereas typical measurement times in 2009 were limited to
14 hours. The longer periods of coherent spin precession
had another advantage, inasmuch as the correlated uncer-
tainty which sets the present sensitivity limit of our
3He-129Xe comagnetometer could be drastically reduced.
The big correlated uncertainty (σcorr) on the sidereal phase
modulation is caused by a partly similar time structure of
ΔΦcðtÞ and the function describing the sidereal phase
modulation: namely, the combined fit to the data of all
seven runs now including the parametrization of the
sidereal phase modulation was performed with

ΔΦfitðtÞ ¼ ΔΦcðtÞ þ
�
sin χ1ex sinðΩstþ φ1Þ þ sin χ1ey cosðΩstþ φ1Þ; for j ≤ 3

sin χ2ex sinðΩstþ φ2Þ þ sin χ2ey cosðΩstþ φ2Þ; for j ≥ 4. (10)

Here, the suitable choice of coordinate frames and
transformations was made as given in Ref. [20]. With χ ¼
arccosðcosΘ cos ρÞwe get sin χ1 ¼ 0.84 and sin χ2 ¼ 0.98.
The phases were determined to be φ1 ¼ 0.103 and
φ2 ¼ −0.677, using φ ¼ arctanð− tan ρ= sinΘÞ þ φs [42].
From the fit, the sidereal phase amplitudes ex and ey

together with their correlated and uncorrelated uncertainties
could finally be extracted as

ex ¼ ð30� 34� 4Þ μrad
ey ¼ ð21� 45� 3Þ μrad: (11)

The present sensitivity limit of our comagnetometer is still
set by σcorr, which is about a factor of 10 higher than σuncorr.
However, compared to the year 2009 measurements, the
ratio ðσcorr=σuncorrÞ could be reduced by a factor of 5, thanks
to the longer periods of coherent spin precession. (The
impact of longer spin-coherence times (T�

2) on σcorr has
been studied in [28].) The results of the sidereal phase
amplitudes can be expressed in terms of the SME coef-
ficients [20,28]

~bnX;Y ¼ 1

2

ℏΩs
γHe
γXe

− 1
ex;y; (12)

assuming that the spins and the magnetic moments of the
3He and 129Xe nuclei are determined by the valence neutron

according to the Schmidt model [46].1 The use of more
accurate nuclear models [47,48] results in

~bnX ¼ ð5.1� 4.9Þ × 10−34 GeV

~bnY ¼ ð3.6� 7.8Þ × 10−34 GeV: (13)

These results can be interpreted as a new upper limit of the
equatorial component ~bn⊥ of the background tensor field
interacting with the spin of the bound neutron [49]:

~bn⊥ < 8.4 × 10−34 GeVð68% C:L:Þ: (14)

This is an improvement by a factor of 30 compared to our year
2009 measurements and an improvement by a factor of 4
compared to the world’s best limit. Several future improve-
ments are feasible. Presently, the relatively short T�

2;Xe,
essentially set by T1;wall, limits the total observation time T
of free spin precession. Efforts to increaseT1;wall considerably
are therefore essential. Besides a gain in phase sensitivity
according to the T−ð1=2Þ power law (CRLB), the still domi-
nating correlated uncertainty will approach the uncorrelated
one. Furthermore, successive measurement runs can be
extended to a period of about 100 days. The long time span
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A
S

D
ra

d

FIG. 2. Allan Standard Deviations (ASD) of the residual phase
noise of a single run (j ¼ 6). The total observation time was
T ¼ 90000 s. With increasing integration times τ the uncertainty
in phase decreases as ∝ τ−ð1=2Þ indicating the presence of white
phase noise.

1This simple model results in ~bnX ¼ ð4.1� 4.7Þ10−34 GeV,
~bnY ¼ ð2.9� 6.2Þ × 10−34 GeV, and ~bn⊥ < 6.7 × 10−34 GeV
(68% C.L.).
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gives the possibility to measure an annual variation of a daily
sidereal modulation to extract limits on boost-dependent
Lorentz and CPT-violating effects like in Ref. [15].
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