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Strong anomalous diffusion, where hjxðtÞjqi ∼ tqνðqÞ with a nonlinear spectrum νðqÞ ≠ const, is wide
spread and has been found in various nonlinear dynamical systems and experiments on active transport in
living cells. Using a stochastic approach we show how this phenomenon is related to infinite covariant
densities; i.e., the asymptotic states of these systems are described by non-normalizable distribution
functions. Our work shows that the concept of infinite covariant densities plays an important role in the
statistical description of open systems exhibiting multifractal anomalous diffusion, as it is complementary
to the central limit theorem.
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Consider particles diffusing in a medium with their total
number conserved. Within a probabilistic approach the
density Pðx; tÞ is normalized to unity

R
∞
−∞ Pðx; tÞdx ¼ 1 for

any time t. It follows naturally that the steady state of a
system in equilibrium is normalized, e.g., the Boltzmann-
Gibbs distribution which serves as the basis of statistical
physics in thermal equilibrium. In contrast, infinite ergodic
theory is a branch of mathematics that investigates dynami-
cal systems whose invariant density is non-normalizable
[1,2]. Current models characterized by non-normalized
densities include intermittent maps [3–5] and the momen-
tum distribution of particles in optical lattice [6–8]. These
systems attain equilibrium; i.e., the non-normalized den-
sities are an extension of Boltzmann-Gibbs-like states [6,7],
and unfortunately we conclude that real-life applications of
infinite ergodic theory are limited. Here we investigate
unbounded systems which are not in equilibrium, inspired
by infinite ergodic theory, we find that non-normalized
covariant densities (defined below) play an important role
in the description of anomalous diffusion. The potential
applications of infinite covariant densities in real world
experiments is shown to be vast. These uncommon den-
sities provide a detailed description of the rare fluctuations
in strong anomalous diffusion.
Strong anomalous diffusion deals with processes, with a

long time t asymptotic behavior, satisfying hjxðtÞjqi∼ tqνðqÞ,
q > 0, where νðqÞ is not a constant [9], in contrast with
standard Brownian motion where νðqÞ ¼ 1=2. Such dif-
fusion has been detected in a variety of processes: in the
transport in two-dimensional incompressible velocity fields
[9], particle spreading in billiard systems [10–14], ava-
lanche dynamics of sand pile models [15], and in statistics
of occupation times of renewal processes [16]. Recent
experiments on the active transport of polystyrene beads in

living cells [17], theoretical investigation of cold atoms in
optical lattices [18] and flows in porous media [19] further
confirmed the generality of strong anomalous diffusion.
Remarkably, in all these systems a piecewise-linear scaling,
with qνðqÞ ∼ q below some critical value of q, and with
qνðqÞ ¼ q − b above this critical value, was found. An
analytical approach to this bilinear scaling, for determin-
istic chaotic dynamics was presented in Ref. [11]. Such
strong anomalous diffusion is an indication of the break-
down of mono-scaling theories which predict Pðx; tÞ∼
t−νfðx=tνÞ, e.g., normal diffusion where fð·Þ is
Gaussian. In this Letter we explain how this breakdown
is related to non-normalizable densities. By investigating a
large class of stochastic processes, the so-called Lévy walks
[20–23], we demonstrate how these densities describe
statistics of strong anomalous diffusion. Our work shows
how infinite covariant densities are complementary to the
Lévy-Gauss central limit theorem, which presents the
mathematical foundation of diffusion phenomena.
The Lévy walk model [20–23] is a widely applicable

process describing strong anomalous diffusion [24]. To
demonstrate the broad validity of our approach we consider
two different classes of the model and four examples. In the
velocity model [25], a particle in one dimension starts at the
origin x ¼ 0 at time t ¼ 0 and travels with velocity v1,
drawn from a probability density function (PDF) FðvÞ. The
duration of the traveling event τ1 is drawn from the PDF
ψðτÞ. The process is then renewed, namely, a new velocity
v2 and flight duration τ2 are drawn from FðvÞ and ψðτÞ
respectively. The process continues in this manner until
time t. The position of the particle is x ¼ R

t
0 vðtÞdt, as

usual. In the jump model [25,26], a particle first waits on
x ¼ 0 for time τ, drawn from ψðτÞ, and performs a jump
with probability 1=2 to a distance x ¼ v0τ or x ¼ −v0τ,
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where v0 ¼ const. The process is then renewed. For
the velocity model we assume that FðvÞ ¼ Fð−vÞ and
that all the moments of FðvÞ are finite. We will address
three cases: (i) a two-state velocity model, FðvÞ ¼
½δðv − v0Þ þ δðvþ v0Þ�=2, (ii) a Gaussian, and (iii) expo-
nential velocity PDFs. The main ingredient of the Lévy
walk model is the waiting time PDF of the power law form

ψðτÞ ∼ A
jΓð−αÞj τ

−ð1þαÞ (1)

with 1 < α < 2 and A > 0. This choice of parameters
insures that the average waiting time, hτi, is finite but the
variance of the waiting time is infinite. These types of
random walks have been widely investigated and specific
values of α have been recorded in several experiments
[27–34] and calculated from first principle models [35,36].
Montroll-Weiss equation.—Let Pðx; tÞ be the PDF of the

particle’s position at time t. The well known Montroll-
Weiss equation [25,26] gives the Fourier-Laplace transform
of Pðx; tÞ for the velocity model [37]

Pðk; uÞ ¼ W̄ðk; uÞ
1 − ψ̄ðk; uÞ ; (2)

where ψ̄ðk; uÞ ¼ R∞
0

R∞
−∞ expð−uτ þ ikvτÞFðvÞψðτÞdτdv

and similarly for W̄ðk; uÞ with WðtÞ ¼ R
∞
t ψðτÞdτ. Here

WðtÞ is the persistence probability to reach x in a single
travelling event. Henceforth, we use the convention that the
variables in a function’s parentheses, e.g., Pðx; tÞ or
Pðk; uÞ, define the space we are working in.
The Fourier transform Pðk; tÞ is Taylor expanded,

Pðk; tÞ ¼ 1þ
X∞
n¼1

ðikÞnhxnðtÞi
n!

; (3)

where the first term is the normalization Pðk ¼ 0; tÞ ¼ 1.
Using Eq. (2) we obtain the integer moments of the
process in the long time limit. The nth moment is obtained
by differentiating hxnðuÞi ¼ ∂nPðk; uÞ=∂ðikÞnjk¼0 with
ψðuÞ ∼ 1 − hτiuþ Auα and then by Laplace inversion.
This is a standard procedure for n ¼ 2 [23] and we use
the Faá di Bruno formula [38] to obtain the exact
asymptotic expressions for all the higher order moments.
The even nth moment of the two-state velocity model is

hxnðtÞi ∼ n
ðn − αÞðnþ 1 − αÞ

A
jΓð1 − αÞjhτi ðv0Þ

ntnþ1−α;

(4)

while odd moments are zero, due to the symmetry of FðvÞ.
The process exhibits super-diffusion hx2i ∼ t3−α because
1 < α < 2. We insert Eq. (4) in Eq. (3) and find

PAðk; tÞ ∼ 1þ t1−α
A

jΓð1 − αÞjhτi
~fαðikv0tÞ; (5)

where the subscript A in PAðk; tÞ stands for the t → ∞
asymptotics and

~fαðiyÞ ¼
X∞
n¼1

ðiyÞ2n
ð2n − 1Þ!ð2n − αÞð2nþ 1 − αÞ : (6)

Summing this series we get

~fαðiyÞ ¼ y2
�

1

3 − α 1F2

�
3 − α

2
;
3

2
;
5 − α

2
;
−y2

4

�

−
1

2 − α 1F2

�
1 −

α

2
;
3

2
; 2 −

α

2
;
−y2

4

��
; (7)

where 1F2 is a hypergeometric function. Next we invert the
asymptotic expression PAðk; tÞ, Eq. (5), using the inverse
Fourier transform and Eq. (7). Since we use the exact
expressions for the long time behavior of the moments of the
process, one may be tempted to believe that this procedure
finally yields the long time limit of the normalized spreading
packet Pðx; tÞ. Indeed for normal transport, for example,
when the waiting times are exponentially distributed, this
procedure yields the familiar Gaussian distribution. Instead,
for the two-state Lévy walk model, we find

PAðx;tÞ¼
1

tα
A

2v0hτijΓð1−αÞj
���� x
v0t

����
−ð1þαÞ�

α−ðα−1Þ
���� x
v0t

����
�

for jxj≤v0t; x≠0; (8)

while PAðx; tÞ ¼ 0 for jxj > v0t. Notice that in the vicinity
of x → 0 we find PAðx; tÞ ∼ jxj−1−α; therefore, it is non-
normalizable. Within our approach we first take the long
time limit (in the calculation of the moments) and only then
perform the inverse Fourier transform. These two math-
ematical operations do not commute, namely, the inverse
Fourier transform of Pðk; tÞ, for any finite t, yields a
normalized density. Still as we proceed to show, the non-
normalized state Eq. (8) describes statistical properties of the
spreading packet of particles and hence physical reality.
Infinite covariant density.—We now define the infinite

covariant density (ICD) according to

lim
t→∞

tαPðx; tÞ ¼ Icdðv̄Þ; (9)

where v̄≡ x=t ¼ R
t
0 vðtÞdt=t is the t → ∞ time averaged

velocity of the particle. Since both Pðx; tÞ and PAðx; tÞ
provide the asymptotic moments of the process, in the
asymptotic regime Eqs. (8), (9) give

Icdðv̄Þ ¼ Kαcαjv̄j−ð1þαÞ
�
1 −

α − 1

α

jv̄j
v0

�
; (10)
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if jv̄j=v0≤1; otherwise, Icdðv̄Þ¼0, and cα¼ sinðπα=2Þ×
Γð1þαÞ=π, Kα ¼ Ahjvjαij cosðπα=2Þj=hτi with hjvjαi¼R
∞
−∞ jvjαFðvÞdv. Here Kα is the anomalous diffusion
constant, a measurable observable, soon to be discussed.
Universality.—The non-normalized density is a generic

feature of Lévy walk processes. A detailed calculation for
the jump model yields

Ijump
cd ðv̄Þ ¼ Kαcαjv̄j−ð1þαÞ½1 − jv̄=v0j� (11)

for jv̄=v0j < 1 and Kα ¼ Aðv0Þαj cosðπα=2Þj=hτi [39]. The
ICD Eqs. (10), (11) exhibit universal features: the scaling
variable is v̄ ¼ x=t, the power law divergence in the limit
v̄ → 0, and the dependence of the density only on asymp-
totic properties of ψðτÞ. Notice that for the jump model,
Eq. (11) shows that we obtain zero density at jv̄j ¼ v0,
while for the two-state velocity model Eq. (10) shows a
finite density at v̄ ¼ v0. This is because the velocity
mechanism propagates the particles further if compared
with the jump approach. This indicates that the ICD can
distinguish between these two models and hence is a
valuable tool in data analysis [40].
For the Gaussian velocity distribution, FðvÞ ¼

ð ffiffiffiffiffiffi
2π

p
v0Þ−1 expð−v2=2v20Þ, we find

IGcdðv̄Þ¼Kαcαjv̄j−ð1þαÞ
�
1−

2ð1=2ÞΓðα
2
Þ

αΓðα−1
2
Þ
jv̄j
v0

�

−
Kαcαðv0Þ−ð1þαÞ

2½ð1þαÞ=2�α2Γð3þα
2
Þ

× 3F3

�
3

2
;
α

2
;
1þα

2
;1þα

2
;
3þα

2
;
1

2
;−

v̄2

2v20

�
; (12)

which once more exhibits the characteristic divergence at
v̄ → 0. We also obtained the ICD for an exponential dis-
tribution of velocities FðvÞ ¼ ð ffiffiffi

2
p

v0Þ−1 expð−
ffiffiffi
2

p jvj=v0Þ,
which is soon presented graphically together with the ICDs
of the other models.
Significance of the ICD and its physical meaning.—

Clearly, the ICD is not normalizable due to its behavior
close to v̄ → 0. Hence it is not immediately obvious that it
describes the concentration of particles. The role of the ICD
is, however, twofold. First, we define observables which are
integrable with respect to the ICD, e.g., jv̄jq provided that
q > α. The averages of these observables are given by the
ICD, for example,

hjv̄jqi ¼ t1−α
Z

∞

−∞
jv̄jqIcdðv̄Þdv̄ (13)

so that hjxðtÞjqi ¼ tqhjv̄jqi [41]. Second, to attain the ICD
from data, one should plot tαPðx; tÞ versus x=t, where
Pðx; tÞ is the concentration of particles. This type of plot
will collapse in the limit of long times onto a master curve:
the ICD, Eq. (9). Thus, the ICD is a property of the

spreading packet, and not merely a mathematical tool with
which we calculate averages. This procedure is presented in
Fig. 1, where we see excellent agreement between the
theory and simulations.
Relation between ICD and the anomalous diffusion

constant Kα.—From Fig. 1, we see that the convergence
to the ICD is slow in the vicinity of the origin v̄ ¼ x=t → 0.
In this region the packet Pðx; tÞ satisfies the fractional
diffusion equation [23],

∂Pcenðx; tÞ
∂t ¼ Kα∇αPcenðx; tÞ; (14)

where the fractional derivative is given by its Fourier
representation ∇α → −jkjα. This equation is derived from
Eq. (2), assuming x ∼ t1=α, while the ICD implies x ∼ t. The
solution of Eq. (14) is

Pcenðx; tÞ ∼
1

ðKαtÞ1=α
Lα

�
x

ðKαtÞ1=α
�
; (15)

where LαðxÞ is the symmetric Lévy distribution [43]. An
observable like jxjq with q > α is not integrable with
respect to the Lévy PDF Eq. (15). To see this recall that
LαðxÞ ∼ jxj−ð1þαÞ so the Lévy PDF has a diverging second
moment. Precisely for that reason we need the ICD.
Averages of observables like jxjq with q > α are given
by the ICD as mentioned, while the Lévy PDF describes the
scaling behavior of Pðx; tÞ at the central region only, and
thus cannot be used to give information even on the mean
square displacement hx2ðtÞi. The opposite is also true. For
example, jxjq is non-integrable with respect to the ICD for
q < α, and hence its mean should be evaluated by using the
Lévy PDF, Eq. (15). Thus Lévy’s central limit theorem [43]
and the ICD provide complementary information on the
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FIG. 1 (color online). Rescaled PDFs tαPðx; tÞ (open symbols)
versus x=t for the jump model with α ¼ 3=2, A ¼ v0 ¼ 1 [42] for
three different times. The bold black line depicts the ICD of the
process Eq. (11). Error bars are smaller then the size of the
symbols. Big filled symbols indicate the locations of the cross-
over velocities v̄c and horizontal lines are Lévy’s central limit
theory for tαPðx ¼ 0; tÞ (see the main text for more details).
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process, and both are needed for a complete statistical
description of the process.
Matching the two solutions.—There must be a connec-

tion between the Lévy PDF and the ICD, since they must
match in intermediate regions. Using LαðxÞ ∼ cαjxj−ð1þαÞ
for large jxj, we obtain from Eq. (15),

tαPcenðx; tÞ ∼ cαKαjx=tj−1−α; (16)

which is the same as that found in Eqs. (10)–(12) when
v̄ → 0. Hence the large x behavior of Pcenðx; tÞmatches the
small argument behavior of the ICD. This, in turn, implies
that if we measure the diffusion constantKα and exponent α
by observing the central part of the packet, we can predict
the behavior of the ICD at the origin since

Icdðv̄Þ ∼ Kαcαjv̄j−ð1þαÞ for v̄ → 0: (17)

As shown in Fig. 2, this relation is universal for the class of
models under investigation.
Crossover behavior.—As shown, the ICD is reached in

the limit of infinite time. For finite but long times there
exists a crossover velocity v̄c above which the ICD serves
as a good approximation for the density of particles, when
scaled properly. At the origin we have tαPðx; tÞjx¼0∼
tαLαð0Þ=ðKαtÞ1=α, which is plotted in Fig. 1 together
with numerics. Using tαPcenðx; tÞjx¼0 ¼ Icdðv̄cÞ as the
definition of the crossover velocity v̄c we find using
Eqs. (15), (17) v̄c ¼ t−ðα−1Þ=αðKαÞ1=α½cα=Lαð0Þ�1=ð1þαÞ with
Lαð0Þ ¼ Γð1þ α−1Þ=π. This crossover velocity v̄c is
shown in Fig. 1 (for three times). Since v̄c approaches
zero as a power law, the convergence of numerical data to
the ICD is slow, especially when α → 1 from above [44].
Strong anomalous diffusion.—Our results show a deep

connection between strong anomalous diffusion and ICDs.
Using Eqs. (9), (13), (15) we obtain

hjxðtÞjqi ¼
�

M<
q tq=α; q < α;

M>
q tqþ1−α; q > α:

(18)

Thus, the model exhibits strong anomalous diffusion
similar to that found in many systems briefly discussed
in the introduction. The amplitudes M<

q and M>
q can be

obtained by using Lévy and ICDs respectively. For the two-
state model we get

M<
q ¼ðKαÞq=α Γð1−q=αÞ

Γð1−qÞcosðπq=2Þ M>
q ¼ 2Kαcαqðv0Þq−α

αðq−αÞðq−αþ1Þ : (19)

These amplitudes diverge as q approaches α from below or
above, an indication of a dynamical phase transition.
ICDs and Gaussian diffusion.—What happens to the

ICD when the models yield Gaussian diffusion, i.e., when
the variance of the waiting time PDF Eq. (1) is finite? In
that case, the center part of the packet is described well by
the Gaussian central limit theorem [25,26]. Still, the outer
parts of Pðx; tÞ are given by the ICD. For example, for
2 < α < 3 in Eq. (1), integer moments greater than the
second are described by the ICD, not by Gaussian statistics
(details to be published). Thus, an ICD can be present even
when the observed diffusion at the central part of Pðx; tÞ is
normal.
Discussion and summary.—The fact that strong anoma-

lous diffusion is a phenomenon observed in a great variety
of different systems, serves as evidence of the universality
of the ICD concept. In addition, in many systems where
strong anomaly was found, one may pinpoint the signatures
of the Lévy walk type of dynamics. For example, the
infinite horizon Lorentz model, with a tracer particle
moving in an array of scatterers, is known to induce long
ballistic flights reminiscent of the Lévy walk model
[22,45,46], with α → 2. Likewise, the experiments on
active transport in a live cell [17], where the connection
to the Lévy walk was proven by removing long jumps from
the trajectories and observing a transition from strongly
anomalous to normal diffusion. Simply said, the applica-
tions of Lévy walks are vast and it follows that the same is
true for the applications of ICDs. Beyond the conceptual
beauty of non-normalizable densities which give rise to a
certain universality, in the sense of universal scaling x ∼ t,
the scaling function itself captures some of the fine details
of the model (as opposed to Lévy and Gaussian densities)
and hence the information in the ICD is crucial for precise
characterisation of an anomalous process. Related devia-
tions from mono-scaling were also observed in models with
a drift [47], though further work is called for to relate ICDs
to biased diffusion models.
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