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Entanglement is a fundamental resource for quantum information processing. In its pure form, it allows
quantum teleportation and sharing classical secrets. Realistic quantum states are noisy and their usefulness
is only partially understood. Bound-entangled states are central to this question—they have no distillable
entanglement, yet sometimes still have a private classical key. We present a construction of bound-
entangled states with a private key based on classical probability distributions. From this emerge states
possessing a new classical analogue of bound entanglement, distinct from the long-sought bound
information. We also find states of smaller dimensions and higher key rates than previously known.
Our construction has implications for classical cryptography: we show that existing protocols are
insufficient for extracting private key from our distributions due to their “bound-entangled” nature. We
propose a simple extension of existing protocols that can extract a key from them.
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Introduction.—A fundamental goal of cryptography is to
establish secure communication between two parties, Alice
and Bob, in the presence of an eavesdropper Eve. This can
be achieved by allowing Alice and Bob to encrypt their
communication using a key obtained from some initially
shared resource—a joint probability distribution [1–3] or
quantum state [4,5]. However, this resource may not be
useful in its original form—the shared key may not be
perfectly random, private, or identical for both parties.
Thus, classical key distillation—the process of generating a
perfectly random, private, and identical key from a given
tripartite probability distribution PABE shared among the
three parties—and the similar quantum task of entangle-
ment distillation from a tripartite quantum state jψiABE, are
problems of fundamental importance [2,3,6–10].
Private key is weaker than entanglement—it can be

obtained by measuring Einstein-Podolsky-Rosen (EPR)
pairs [4]. Thus, one can distill private key from a quantum
state by first distilling EPR pairs. This strategy is not
optimal in general due to the existence of private bound
entanglement—entangled states from which EPR pairs
cannot be distilled, but nevertheless a private key can be
obtained [11,12].
Private bound-entangled states demonstrate a striking

distinction between two forms of correlation: private
classical key and shared entanglement. The best rate at
which Alice and Bob can generate private key from jψiABE
when only Eve has access to the E part of the initial state
and all public messages sent by Alice and Bob is called the
private key rate, denoted by KðψABEÞ. Now, in addition to
the above, assume that Eve also has access to all ancillary
trash systems that Alice and Bob have introduced during
the protocol. I.e., all information produced during the
protocol—other than the final key—becomes available to
Eve once the protocol is over. In such a case, distilling a key

becomes much harder. In the language of [11,12], the
final “key” system cannot be protected by any “shield”
systems kept by Alice and Bob. In fact, as the following
simple observations imply, Alice and Bob have no choice
but to resort to distilling a much stronger resource—
entanglement. One can check that (i) if Alice and Bob
can distill entanglement, they maintain privacy from Eve
even if she has access to all ancillary trash systems
produced during the protocol; (ii) conversely, the only
way of obtaining a resource that guarantees privacy
between Alice and Bob when all trash systems are available
to Eve is to distill entanglement [13]. Thus, the best rate of
producing a private key in the more restricted scenario
when all ancillary trash systems are available to Eve, is the
same as the entanglement distillation rate DðψABEÞ—the
best rate at which Alice and Bob can distill EPR pairs from
jψiABE via local operations and classical communication
(LOCC). Private bound-entangled states have DðψABEÞ ¼ 0
and KðψABEÞ > 0.
We will show that a similar distinction exists also in the

classical world. In the classical case, a private key must be
distilled from a shared probability distribution PABE by
public discussion between Alice and Bob. At each step
of the protocol, either Alice or Bob generates a public
message from her or his random variables, followed by a
stochastic map that modifies the variables. In general, such
maps might not be reversible and thus partially destroy
the information (we call such maps noisy processing). We
denote by KðPABEÞ the best private key rate obtainable by
such protocols (i.e., protocols that involve public discus-
sion and noisy processing). In an alternative scenario, Alice
and Bob can only create new random variables but cannot
modify or destroy the existing ones [14]. Furthermore, all
variables (except the ones that contain the key) become
available to Eve at the end of the protocol. We denote the
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best key rate of such protocols by KPDðPABEÞ, where PD
stands for public discussion (the protocol involves only
public discussion and no noisy processing). Because in the
quantum setting it is distillable entanglement that is
resistant to giving trash systems to Eve, its natural classical
analogue is KPD. The quantum quantity corresponding to
the private key achieved by including noisy processing
KðPABEÞ is simply the private key obtainable by LOCC,
KðψABEÞ. Table I summarizes the quantities of interest.
Previous studies pursuing a classical analogue of bound

entanglement [15–18] looked for distributions with
KðPABEÞ ¼ 0. A particular distribution, obtained by meas-
uring a bound-entangled quantum state, was considered in
[15]. It was hoped that because the quantum state was
bound, no key would be distillable from the classical
distribution. This hope was tempered by the discovery of
private bound-entangled states [11,12], whose existence
demonstrates a clear distinction between secrecy and bound
entanglement. Our work establishes a similar distinction
classically by giving distributions withKPDðPABEÞ ¼ 0 that
cannot be created by public discussion, in direct analogy
with quantum bound-entangled states. We specifically do
not solve the long-standing question of whether or not there
is bound information [15–18], which corresponds to
KðPABEÞ ¼ 0 according to our notation (see Table I) and
which we would prefer to call “bound private key”. It is
interesting to note that in the tripartite case, an affirmative
answer has been demonstrated classically [17].
Construction.—Our results are based on tripartite prob-

ability distributions PABE whose probabilities pða; b; eÞ
have a special combinatorial structure [19] (see Fig. 1):

∀b; e jfa∶pða; b; eÞ ≠ 0gj ≤ 1; (1)

∀a; e jfb∶pða; b; eÞ ≠ 0gj ≤ 1; (2)

∀a; b jfe∶pða; b; eÞ ≠ 0gj ≤ 1; (3)

where jSj denotes the size of set S. We call such distribu-
tions unambiguous, since any two parties can uniquely
determine the third party’s variable. Such distributions have
a convenient graphical representation (see Fig. 2), which
together with PAB determines the full distribution PABE
(up to permutations on E).

We identify PABE with a tripartite pure state

jψiABE ≔
ffiffiffiffiffiffiffiffiffiffi
PABE

p

≔
X

a;b;e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pða; b; eÞ

p
jaiAjbiBjeiE; (4)

where jaiA, jbiB, jeiE are standard basis vectors for
systems A, B, E and with a bipartite mixed state

ρAB≔TrEjψihψ jABE (5)

on Alice and Bob whose purification is held by Eve. Such
states have a special structure, since all eigenvectors of
ρAB have the same Schmidt basis.
The partial transpose (PT) [20] of ρAB is defined on the

standard basis as

ðjaiha0jA ⊗ jbihb0jBÞΓ ≔ jaiha0jA ⊗ jb0ihbjB (6)

and extended by linearity. If ρAB is PT invariant (ρΓAB ¼ ρAB)
then it has positive partial transpose and thus no distillable
entanglement [21] (unambiguous distributions PABE
that yield PT-invariant states ρAB are characterized in
Appendix B, Ref. [22]).
Results.—Using the properties of unambiguous distri-

butions and Eq. (4), which promotes any classical distri-
bution to a quantum state, we establish a strong analogy
between classical and quantum distillation problems in
Table I. We show that a classical protocol with an
unambiguous initial distribution can be “lifted” to a
quantum protocol with an unambiguous initial state, with-
out decreasing the associated distillation rate.
Theorem 1: Let PABE be an unambiguous probability

distribution and jψiABE be the associated quantum state.
The distillable entanglement of jψiABE is at least as big as
the distillable key by public discussion of PABE,

DðψABEÞ ≥ KPDðPABEÞ: (7)

The distillable key of jψiABE is at least as big as the
distillable key by public discussion and noisy processing of
PABE [23],

KðψABEÞ ≥ KðPABEÞ: (8)

TABLE I. Quantum-classical dictionary for states and distillation rates. A tripartite probability distribution PABE is
unambiguous if it satisfies Eqs. (1)–(3). The associated quantum state jψABEi is given by Eq. (4).

Quantum Classical

States jψiABE unambiguous quantum state PABE unambiguous probability distribution

Entanglement distillation
(public trash)

DðψABEÞ EPR pairs by LOCC KPDðPABEÞ private key by public discussion

Private key distillation
(private trash)

KðψABEÞ private key by LOCC KðPABEÞ private key by public discussion
and noisy processing
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Proof.—Let
ffiffiffiffiffiffiffiffiffiffiffi
QABE

p
be the quantum state associated to

distributionQABE at some step of the classical protocol, and
let

ffiffiffiffiffi
M

p
denote the entry-wise square root of the stochastic

map M that is applied. Without loss of generality, M
introduces a new random variable. Hence, if QABE is
unambiguous then so is M ·QABE. By induction, the
distribution remains unambiguous throughout the
protocol. Furthermore, at every step

ffiffiffiffiffi
M

p
·

ffiffiffiffiffiffiffiffiffiffiffi
QABE

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M ·QABE

p
, which allows lifting the classical protocol to

a quantum one. The quantum protocol achieves the same
rate due to properties of unambiguous states (see Appendix
C for complete proof). ▪
Recall that private bound-entangled states have

DðψABEÞ ¼ 0 and KðψABEÞ > 0, implying that

entanglement and private key are distinct resources in
the quantum world. We show that KPD and K also
correspond to distinct resources classically.
Theorem 2: Unambiguous probability distributions

PABE with KPDðPABEÞ ¼ 0 and KðPABEÞ > 0 exist.
Proof.—To guarantee KPDðPABEÞ ¼ 0, we choose an

unambiguous PABE corresponding to a PT-invariant ρAB.
Then DðρABÞ ¼ 0 and KPD vanishes by Theorem 1. We
obtain a positive value ofKðPABEÞ by cleverly choosing the
diagram of PABE (see Fig. 2) and numerically optimizing
the right-hand side of

KðPABEÞ ≥ IðX;BÞ − IðX;EÞ; (9)

where IðX;BÞ denotes the mutual information [24] between
classical random variables X and B, and X is obtained by
noisy processing of A. Table II summarizes our findings for
various small dimensions, and Fig. 2 shows the structure of
our smallest example, a 3 × 3 state. More details and explicit
examples are provided in Appendix E. ▪
Since our construction guarantees DðψABEÞ ¼ 0, we can

lift any PABE from Theorem 2 to a private bound-entangled
state jψiABE by applying Theorem 1.
Corollary 3. Any PABE from Theorem 2 yields a private

bound-entangled state jψiABE via Eq. (4).
This gives a new construction of private bound-

entangled states (the only known construction before our
work was [11,12]). In fact, due to the lifting established by
Theorem 1, it is natural to consider the distribution PABE in
Theorem 2 as a classical analogue of private bound
entanglement. This provides a satisfactory resolution to
the problem of finding a classical analogue of bound
entanglement [15–18].
Implications for classical key agreement.—The basic

technique for classical key agreement is a combination of
error correction and privacy amplification (ECþ PA),
which achieves a rate of the mutual information difference

FIG. 2. Agraphical representationofanunambiguousdistribution
PABE with dA ¼ dB ¼ 3 and dE ¼ 4. For each nonzero entry of
pða; b; eÞ we put a dot at coordinates (a, b), and connect dots
corresponding to the same symbol for Eve. Note that each cell
contains at most one dot due to Eq. (3), and the resulting graph is a
union of disjoint cliques (complete graphs) where each clique
represents a different symbol for Eve. The above example has four
connectedcomponents,hence,dE ¼ 4.Furthermore,notwovertices
from a clique share the same column or row due to Eqs. (1) and (2).
For PT invariance (see Appendix B), the diagram in addition must
also be a union of crosses, i.e., pairs of edges ða; bÞ − ða0; b0Þ and
ða; b0Þ − ða0; bÞ for some a ≠ a0 and b ≠ b0. The above diagram
consists of three crosses: two small and one large.

FIG. 1 (color online). A three-dimensional representation of an
unambiguous probability distribution PABE. Each axis corre-
sponds to one of the three parties and each cube represents a triple
(a, b, e) such that pða; b; eÞ ≠ 0. Intuitively, Eqs. (1)–(3) say that
the small cubes do not overlap if this block is compressed along
any of the three axes.

TABLE II. Summary of private bound-entangled states
obtained using our construction. Here dA, dB, and dE are the
dimensions of Alice, Bob, and Eve. The third column is a
numerical lower bound on the amount of distillable private key.
The amount of private key in our 4 × 4 example exceeds
0.0213399 achieved by [12]. Our 4 × 5 example can be
embedded in the 5 × 6 and 6 × 5 examples, but we report
only states that are not trivially reducible to examples in
smaller dimensions. This is why the last two examples have
smaller key rates despite having larger dimensions.

dA × dB dE Bits of private key

3 × 3 4 0.0057852
4 × 4 6 0.0293914
4 × 5 8 0.0480494
5 × 6 10 0.0378462
6 × 5 10 0.0354342
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IðA;BÞ − IðA;EÞ [2]. Essentially all other protocols use
ECþ PA as a final step. For example, preceding ECþ PA
by a noisy processing step in which the distribution of A is
modified gives the optimal key rate for distillation with
one-way discussion from Alice to Bob [3]. Similarly,
Maurer considered public discussion protocols where
Alice and Bob exchange the information about their
variables in a two-way fashion [8]. Public discussion
includes as special cases postselection and reverse recon-
ciliation, but does not include noisy processing. Maurer
showed that two-way public discussion can be strictly
stronger than one-way. He also suggested that in the two-
way setting noisy processing might give no benefit [8].
Evidence suggesting the opposite later was given in [25].
By considering the classical unambiguous probability

distributions that yield private bound-entangled states, we
find that in general public discussion alone is insufficient
for optimal key extraction even in the two-way setting.
Stronger still, while no key can be distilled using only
public discussion, a positive rate is achieved by noisy
processing and one-way discussion.
Conclusions.—We have concentrated on the analogy

between quantum entanglement distillation and classical
key distillation using only public discussion, and aban-
doned for now the search for bound information, which
remains an important open question. This led us to observe
the dual nature of unambiguous distributions and quantum
states, which in turn suggested a proof that noisy process-
ing is necessary for two-way key distillation. While this
finding concerns a purely classical question, reaching this
conclusion appears to require a detour through quantum
mechanics—we know of no classical proof. This suggests
an exciting possibility of using quantum means to solve
other questions in classical cryptography and information
theory.
Along the way we found a new construction of private

bound-entangled states. The standard construction involves
two systems for each party: a key system yielding private
correlations upon measurement, and a shield system that
weakens Eve’s correlation with the key [11,12]. Our
construction does not employ the key or shield distinction.
Instead, we first construct a classical unambiguous prob-
ability distribution and promote it to a private bound-
entangled quantum state. This gives an example in 3 × 3
dimensions, which is too small to accommodate key and
shield subsystems. We also find an example in 4 × 4 with
more key than that of [12], and further examples in other
dimensions. Of course, though our constructions do not
have a clear key or shield separation, a protocol that distills
key from many copies of our states produces trash that
cannot be safely handed over to Eve (the state is bound
entangled after all). This trash can then be identified as the
shield of the purified key.
Bound-entangled states are not just a curious mathemati-

cal construction—their existence has been verified

experimentally [26–34]. The Smolin state was prepared
using polarized photons [27,28,33,34] and trapped ions
[29]. A pseudo-bound-entangled state was created using
nuclear magnetic resonance [30]. A continuous-variable
bound-entangled state of light was prepared by [31].
Finally, states with more distillable key than entanglement
have been prepared [32,33]; however, they are not bound.
So far no experiment has demonstrated a private bound-

entangled state. The simplest known example is given by
our construction (Fig. 2). It can be prepared by randomly
sampling four pure entangled two-qutrit states (three have
Schmidt rank 2 and one has Schmidt rank 3). Furthermore,
their amplitudes are real, so each individual state can be
prepared by performing rotations around a single axis in the
two-dimensional subspace spanned by j00iAB and j11iAB,
and permuting the standard basis vectors j0i, j1i, j2i of
each qutrit.
Our work may facilitate an experimental demonstration

of superactivation—a phenomenon wherein pairs of quan-
tum channels, neither of which can transmit quantum
information on its own, nevertheless have positive capacity
when used together [35]. Channels with zero quantum
capacity but positive private classical capacity are central to
the phenomenon, and these can easily be constructed from
our private bound-entangled states. Indeed, our 3 × 3 state
gives rise to a zero-capacity channel acting on a single
qutrit that can be superactivated by a 50% erasure channel
with four-dimensional input, the smallest known example.
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