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Artificial gauge fields are a unique way of manipulating the motional state of cold atoms. Here we
propose the use (practical or conceptual) of artificial gauge fields—obtained, e.g., experimentally via lattice
shaking or conceptually via a Galilean transformation—to perform primary noise thermometry of cold atoms
in optical lattices, not requiring any form of prior calibration. The proposed thermometric scheme relies on
fundamental fluctuation-dissipation relations, connecting the global response to the variation of the applied
gauge field and the fluctuation of quantities related to the momentum distribution (such as the average
kinetic energy or the average current). We demonstrate gauge-field thermometry for several physical
situations, including free fermions and interacting bosons. The proposed approach is extremely robust to
quantum fluctuations—even in the vicinity of a quantum phase transition—when it relies on the thermal
fluctuations of an emerging classical field, associated with the onset of Bose condensation or chiral order.
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Cold atoms in optical lattices [1,2] currently represent
the most prominent candidate for the quantum simulation
[3] of lattice bosons and fermions, given the extreme level
of tunability of the microscopic Hamiltonian parameters
(tunneling, interaction, etc.), and the rapidly developing
toolbox of experimental probes to characterize the many-
body quantum state [1]. Yet, one of the most important
limitations of cold-atom quantum simulation is the intrinsic
difficulty to control the macroscopic parameters of the
system, such as the chemical potential or the temperature,
due to the fact that the system under investigation is
virtually decoupled from any reservoir. This limitation
is particularly serious if one is willing to reconstruct
the equilibrium phase diagram of complex lattice
Hamiltonians, study the nature of their phase transitions,
etc. In particular, a proper quantum simulator should be
equipped with a primary thermometric scheme, not needing
any fit to theory data relative to the model of interest.
Most prominent proposals for primary thermometry of

strongly interacting cold atoms [4] rely on the ability to
image in situ the atomic cloud [5,6]. Regarding the (para-
bolic) trapping potential as a slowly varying external field
coupling to the density, one can extract the local com-
pressibility from the density gradient within a local-density
approximation scheme and relate it to the local-density
fluctuations via a fundamental fluctuation-dissipation (FD)
relation, which in turn enables us to extract the temperature.
This thermometry scheme (or a simplified version thereof)
has been exploited in recent experiments equipped with a
quantum-gas microscope [7–9]. An alternative approach,
also based on high-resolution imaging and local-density
approximation, implies a fit of the tails of the atomic cloud
to the known thermodynamics of a diluted Bose (or Fermi)
gas [10,11]. The requirement of high-resolution imaging

can often be challenging in the experiments—especially
when dealing with three-dimensional atomic clouds.
Moreover, the above thermometry scheme completely
breaks down when using box traps—which have recently
become available via holographic techniques [11–13]—and
which represent an important step towards the quantum
simulation of bulk many-body phases.
In this Letter we propose a new thermometry scheme for

optical-lattice quantum simulators, based on the use of
artificial gauge fields (GF), which represent an invaluable
theoretical tool, and have also recently become available in
experiments [14]. In particular, a GF offers a unique way to
manipulate the momentum distribution, namely, the most
accessible observable in cold-atom experiments. Exploiting
FD relations which link the variation of the momentum
distribution upon applying an artificial GF to the noise in
the momentum distribution itself, we devise a primary
noise thermometer solely relying on time-of-flight mea-
surements. Specifically, the GF necessary for thermometry
can be trivial (namely, it amounts to a simple Galilean
transformation of the Hamiltonian), in which case it does
not even need to be realized experimentally, but it can be
mimicked by a simple shift of the momentum distribution.
More generally, the GF required for thermometry can be
achieved via lattice shaking [15–19]—a scheme easily
integrated in standard optical lattice experiments; an alter-
native scheme based on a combination of rf and Raman
fields has been realized in Ref. [20]. We demonstrate
gauge-field thermometry for a variety of physical systems,
showing its robustness to the presence of strong quantum
fluctuations provided that one bases thermometry on the
FD relation involving an order parameter, minimally
affected by quantum fluctuations.
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For definiteness, let us consider the following general
Hamiltonian for quantum particles in an artificial gauge
field, H ¼ HJ þHU þHt. Here,

HJ ¼ −J X

hiji∥x
ðeiΦa†i aj þ H:c:Þ − J

X

hlmi∥x̄
ða†l am þ H:c:Þ

(1)

describes the hopping between pairs of nearest-neighboring
sites hiji and hlmi. In particular, we assume that the GF is
introduced by the presence of a uniform Peierls phase Φ on
all the bonds hiji parallel to a given lattice direction (x),
while no GF is present along the other directions (x̄). Such a
GF corresponds trivially to a Galilean transformation in the
case of a square or cubic lattice, but it creates a nontrivial
staggered flux in a triangular lattice [19], in a kagome
lattice, etc. Furthermore, HU represents an on-site inter-
action term, and Ht a trapping potential term. In the
following, we will consider the case of fermionic as well
as bosonic operators a, a†.
In our scheme, the Peierls phase Φ plays the role of the

probe field. The response of a generic observable hAi (h� � �i
denoting the statistical average) to a variation of the applied
GF is given by

∂hAi
∂Φ ¼ J

T
½cosΦcovτðA;KsÞ − sinΦcovτðA;KcÞ�: (2)

Here, Kc¼
P

hiji∥xða†i ajþH:c:Þ and Ks ¼ i
P

hiji∥xða†i aj−
H:c:Þ are, respectively, the Josephson coupling and the
current operator along the x direction, and covτ is the
(imaginary) time-averaged covariance, covτðA; BÞ ¼
1
β

R β
0 dτ½hAð0ÞBðτÞi − hAihBi� (β ¼ T−1). T is the temper-

ature. Throughout the Letter, we set kB ¼ 1.
The capability of applying a tunable GF Φ allows us to

reconstruct experimentally the response function ∂hAi=∂Φ
to the left-hand side of Eq. (2). Thermometry can be
achieved through Eq. (2) if one is also able to measure the
right-hand side, containing the correlation between the
fluctuations of the observable A and the operators Kc, Ks—
which can be extracted experimentally as discussed below.
It is obvious that experiments cannot reconstruct the
time-averaged covariance, but rather the conventional,
equal-time one, covðA;BÞ ¼ hABi − hAihBi. If A (or B)
commutes with the Hamiltonian, then covτðA; BÞ ¼
covðA;BÞ; yet for a generic optical lattice experiment,
the only integrals of motion are the total particle number
(which is independent of the applied GF) and the total
energy (which is not easily measurable). Hence, one has to
resort to a judiciously chosen observable A, whose quan-
tum fluctuations are well controlled. We will discuss in the
following how to choose such an observable. For any
observable A, one has a temperature estimator TA, which is
accessible experimentally:

TA

J
¼∶

cosΦcovðA;KsÞ − sinΦcovðA;KcÞ
∂ΦhAi

: (3)

TA approximates arbitrarily well the temperature T of the
system if the purely quantum fluctuations of A are
arbitrarily weak. In practice this means that generic
observables A related to the momentum distribution can
a priori provide excellent estimates of the temperature in
the case of a lattice Bose or Fermi gas with weak
interactions, and immersed in a weakly confining potential.
We will provide specific examples below—as we will see,
the condition of weak interactions and confinement can, in
fact, be lifted if the system develops strong correlations,
robust to the presence of quantum fluctuations in the
thermodynamic limit. Beyond its practical thermometry
scope, the temperature estimator TA also has a fundamental
meaning: it expresses an effective temperature related to the
observable A in question, accounting for its combined
thermal and quantum fluctuations.
The operators Kc and Ks can be easily extracted

from the momentum distribution operator nðqÞ ¼
jwðqÞj2Pije

iq·ðri−rjÞa†i aj via an inverse Fourier transform
[here, wðqÞ is the Fourier transform of the lattice Wannier
function WðrÞ, wðqÞ ¼ R

d3r=ð2πÞ3=2eiq·rWðrÞ�: Kc ¼
2
R
ddq cosðq · x̂ÞnðqÞ and Ks ¼ 2

R
ddq sinðq · x̂ÞnðqÞ.

Therefore, each time-of-flight measurement realizes a
projective measurement of Kc and Ks; if the observable
A is also a quantity measured projectively via time of flight,
a generic cold-atom experiment can access the full-
counting statistics of all these quantities [21], and, in
particular, the covariances contained in the temperature
estimator, Eq. (3). Moreover, A should be such that
∂ΦhAi ≠ 0, and, in particular, it is convenient that the Φ
dependence of hAi be significant around the value of Φ of
interest.
Interacting bosons.—We begin our discussion with the

case of interacting bosons undergoing a transition from a
superfluid phase to a Mott insulator phase. The numerical
study of the Hamiltonian with Peierls phases, Eq. (1), is
notoriously difficult, given that the complex hopping
amplitudes produce a negative sign problem in quantum
Monte Carlo simulations. Nonetheless, in the limit of large
integer filling n ≫ 1, the Bose-Hubbard model admits a
mapping onto the quantum rotor Hamiltonian [22,23]:

HQR ¼ −2Jn X

hiji∥x
cosðϕi − ϕj − ΦÞ

− 2Jn
X

hlmijjx̄
cosðϕl − ϕmÞ −U

2

X

i

∂2

∂ϕ2
i
; (4)

where ϕi is the local phase of the lattice Bose operator.
Given the constraint of integer filling, the effect of trapping
cannot be accurately reproduced within the quantum
rotor Hamiltonian [21]—yet, we can mimic the effect
of confinement by introducing open boundary conditions.
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The quantum rotor Hamiltonian conveniently lends itself to
path-integral Monte Carlo simulations [22], which, being
formulated in the basis of the phase eigenstates, allow us to
reconstruct the full-counting statistics of any quantity
related to the momentum distribution, much as in time-
of-flight experiments. Moreover, the quantum rotor
formulation allows for the introduction of arbitrary GFs
without the appearance of a sign problem. Simulations are
performed on L × L square lattices and L3 cubic latti-
ces [21].
Square and cubic lattice.—We begin our discussion with

the case of square and cubic lattices, for which the Peierls
phase introduced in Eq. (1) is gauge trivial. Yet it represents
an invaluable conceptual thermometry tool in the super-
fluid regime at zero GF for both lattices. The tool is purely
conceptual because the Peierls phase induces a simple
Galilean shift of the momentum distribution nðqÞ → nðqþ
Φx̂Þ [Fig. 1(c)], so that experimentally the actual applica-
tion of the Peierls phase is not needed—all Φ derivatives
can be evaluated by simply translating the measured
momentum distribution. We consider the response of
several nðqÞ-related quantities to the applied Peierls phase:
(1) The already mentioned current operator Ks; (2) a
measure of the asymmetry of the momentum distribution
peak at q ¼ 0, D∞ ¼ ðNþ − N−Þ=ðNþ þ N−Þ, where
N� ¼ P

q∈D�nðqÞ is the number of particles in a disk
D� in momentum space of radius R ¼ 0.4a−1 (a is the
lattice spacing), centered around the point q� ¼ ð�R; 0Þ

[see Fig. 1(c) for an illustration] [24]; (3) the total x
component of momentum in the double-disk region,
Qx∞ ¼ P

q∈D�qxnðqÞ=ðNþ þ N−Þ, namely, the first
moment (along the x direction) of the momentum distri-
bution on the two-disk region. The three quantities are
chosen so as to have a nonvanishing derivative as a function
of Φ (this is not the case for Kc, which is therefore not
considered here). In particular,D∞ andQx∞ are sensitive to
the displacement of the q ¼ 0 peak upon changing the
GF [25].
Figures 1(a) and 1(b) show the temperature dependence

of the thermometry relative error ϵ ¼ jTA − Tj=T based on
Eq. (3), with A ¼ Ks, D∞, and Qx∞ for different values of
the boson-boson interaction U, up to and past the critical
point for the superfluid/Mott-insulator transition—which is
estimated [23] for quantum rotors on the square lattice to be
½U=ð2JnÞ�c ≈ 5.8, and on the cubic lattice to be
½U=ð2JnÞ�c ≈ 10. We observe that the relative error
degrades as one increases the interaction, due to the
enhanced quantum fluctuations in the momentum distri-
bution. Yet the temperature dependence of ϵ is highly
nonmonotonic, showing a distinct dip at intermediate
temperatures, particularly marked for thermometry based
on the two quantities related to the condensate peak,
namely, D∞ and Qx∞. At first sight this might appear
surprising, as the low-temperature regime is the one in
which quantum fluctuations jeopardizing the accuracy of
the proposed thermometry are most prominent. On the
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(b) cubic lattice
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FIG. 1 (color online). Gauge-field thermometry for the quantum rotor (QR) model on the square lattice (SL) and cubic lattice (CL).
(a),(b) Thermometry accuracy related to the observables Ks, Qx∞, and D∞ (see text) as a function of temperature for a SL with L ¼ 20
(a) and a CL with L ¼ 10 (b). The dotted lines mark the 10% accuracy threshold. (c) Φ dependence of the peak position of a QR model
on the SL (L ¼ 20). The solid and dashed circles refer to the two contributions to D∞. (d) Scaling of thermometry accuracy for the QR
model close to the Mott insulator quantum critical point. The arrows mark the critical temperatures TKT=ð2JnÞ ¼ 0.34ð2Þ (SL) and
Tc=ð2JnÞ ¼ 1.35ð5Þ (SL).
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other hand, it is natural to relate this anomaly in the
temperature behavior of ϵ to the phase transition of the two
systems under investigation, namely, the Kosterlitz-
Thouless (KT) transition of the square lattice and the
condensation transition on the cubic lattice. At and below
the transition, the condensate fraction becomes macro-
scopic (in d ¼ 3) or quasimacroscopic (in d ¼ 2), diverg-
ing in the thermodynamic limit, while its fluctuations (both
thermal and quantum) do not follow the same scaling. This
means that thermometry related to fluctuations of the
condensate peak can be expected to be minimally affected
by quantum fluctuations. In particular, as shown in
Fig. 1(d), upon increasing the size of the system, the
accuracy of thermometry improves with growing system
size below the KT transition in 2d (T < TKT) and below the
condensation transition in 3d (T < Tc). A detailed scaling
analysis [21] shows that the relative error ϵ of thermometry
associated with D∞ appears to scale as L−1 below the KT
transition in 2d and as ðL logLÞ−1 below the condensation
transition in 3d, as a result of the scaling of the covariance
difference ΔcovðD∞;KsÞ ¼ covðD∞;KsÞ− covτðD∞;KsÞ,
as well as of the derivative ∂ΦD∞ (the latter showing
agreement with Bogolyubov theory). On the other hand, the
relative error ceases to scale in the normal phase.
Triangular lattice with a π flux.—As a second example,

we consider thermometry in a system with an applied,
nontrivial GF, namely, a triangular lattice with a π flux,
realized recently via lattice shaking in Refs. [17,19]. Such a
system possesses an additional, discrete Z2 symmetry
associated with the choice of two degenerate vortex
patterns (with alternation of vortices or antivortices on
adjacent plaquettes, Fig. 2(b) [26]). This symmetry is
broken via a chiral Ising transition at a critical temperature
Tk, as also observed in the experiments [17,19]. In
particular, the two vortex patterns can be distinguished
by the appearance of a finite current Ks on the horizontal
links of the triangular lattice, serving, therefore, as an order

parameter [Fig 2(b)]. Figures 2(a) and 2(c) show the
accuracy of thermometry based on Ks as a function of
temperature and of increasing repulsion U among the
bosons. For U > Uc ≈ 2.8ð2JnÞ, the repulsion drives the
system across a quantum critical point with destruction of
long-range chiral order [27]. Yet we observe that, similarly
to the condensation transition of the previous example, the
chiral transition boosts the accuracy of thermometry in a
dramatic fashion up to the quantum critical point. In
particular, in the chiral phase the relative error of the
proposed thermometry scales as L−2, driven by the very
violent divergence of ∂ΦhKsi (as L4) [21].
Free fermions on the triangular lattice.—We end our

discussion by illustrating the thermometry scheme in
question in the case of free fermions (HU ¼ 0). In the
absence of a trapping potential, the Hamiltonian commutes
with Kc and Ks, so that TKc

¼ TKs
¼ T. Yet the presence

of a trapping potential term, Ht ¼ V
P

i½ðri − r0Þ=a�2ni
(with a the lattice spacing), induces quantum fluctuations
in the Ks and Kc operators, giving rise to a discrepancy
between the above temperature estimators and the actual
temperature. To evaluate the impact of quantum fluctua-
tions, we consider a diluted fermionic system of N ¼ 50
fermions on a triangular lattice, subject to a confining
potential V ¼ 0.1J. Figure 3 shows exact diagonalization
results [21] for the temperature estimators: we observe that,
for most values of the flux Φ, both TKc

and TKs
lie very

close to the actual temperature, and that the relative error ε
is typically < 10% for T > 0.1TF; we anticipate a signifi-
cantly better accuracy of the temperature estimators for
systems that experience a weaker confining potential, or are
trapped in a steeper than parabolic trap. It is important to
observe that TKs

has a sharp singularity at Φ ¼ π=2, due to
the fact that ∂ΦhKsi vanishes at that value. On the other
hand, ∂ΦhKci ¼ 0 for Φ ¼ 0, π. Therefore, the two temper-
ature estimators are fully complementary [28].
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FIG. 2 (color online). Gauge-field thermometry for the QR
model on a triangular lattice with a π flux. (a) T dependence of the
accuracy of thermometry based on the current Ks for different
interactions u ¼ U=ð2JnÞ crossing the quantum critical point
uc ≈ 2.8. (b) Degenerate vortex patterns in the ground state of the
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In conclusion, we propose gauge-field thermometry for
cold atoms in optical lattices, namely, primary thermometry
based on monitoring the fluctuations of the momentum
distribution, as well as its response to the application of an
artificial gauge field (either trivial or actually realized in the
experiment). The proposed thermometry paves the way for
the reconstruction of the phase diagram of fundamental
lattice models using cold-atom quantum simulators. Future
work [27] will address the extension of this scheme to
continuum space as well as to disordered systems.
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