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Large-scale molecular dynamics simulations show that nanoparticle (NP) diffusivity in weakly interacting
mixtures of NPs and polymer melts has two very different classes of behavior depending on their size. NP
relaxation times and their diffusivities are completely described by the local, Rouse dynamics of the polymer
chains for NPs smaller than the polymer entanglement mesh size. The motion of larger NPs, which are
comparable to the entanglement mesh size, is significantly slowed by chain entanglements, and is not
describable by the Stokes-Einstein relationship. Our results are in essentially quantitative agreement with a
force-level generalized Langevin equation theory for all the NP sizes and chain lengths explored, and imply
that for these lightly entangled systems, activated NP hopping is not important.
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The transport properties of nanoparticle-polymer mix-

tures have been the focus of much recent attention [1–11].
There is good understanding of the motion of very large or
very small colloidal particles of radius RNP ≡ σNP=2 in a
polymer melt or solution. The nanoparticle (NP) diffusion
coefficient (D) in the large particle limit follows the Stokes-
Einstein (SE) relation, D ¼ kBT=

�
fπηRNP

�
, where kB is

Boltzmann’s constant, T is the absolute temperature, η is
the solvent viscosity, and f ¼ 4 or 6 for slip or stick
boundary conditions, respectively [6]. The corresponding
behavior of small NPs, comparable to the size of a
monomer, is also described by the SE relationship but
with a length-scale-dependent viscosity that is smaller than
the macroscopic value [10,12]. Specifically, the relevant
apparent viscosity is controlled by subsections of chains
with an end-to-end distance comparable to the NP size, as
has been verified by molecular dynamics (MD) simulations
[13] and theory [2]. In contrast to these well-defined limits,
the behavior of NPs of diameter Oð1Þ times the entangle-
ment mesh size in long chain environments, dT , is con-
troversial [1,5,14–16]. Brochard-Wyart and de Gennes [12]
argued that the NP diffusion constant follows normal SE
behavior essentially immediately when its size becomes
bigger than dT , the entanglement mesh size. Such a sharp
size-dependent crossover to SE has been seen by
Szymanski et al. [17]. However, the recent work by Cai
et al. [2] implies that the motion of these intermediate sized
NPs should be faster than SE behavior since diffusion can
be facilitated by hoplike motions through the polymer’s
entanglement mesh. Faster transport is also predicted by a
microscopic force-level theory, but based on the idea that
chain relaxation and local entanglement mesh fluctuations
(“constraint release”) dominate over hopping [18]. Thus,
these two very different ideas suggest that SE behavior
would only be seen for NPs bigger than the entanglement
diameter, i.e., σNP > 2–10dT . In the spirit of the

entanglement dominated picture, Saxton showed, through
simulations of NP motion in the presence of fixed obstacles,
that the mean-squared displacement (MSD) follows an
anomalous Δr2 ∼ tβ, β < 1 behavior [15]. While such
anomalous behavior has been seen recently by Guo et al.
[5], Omari et al. [9], Wong et al. [16], and Amblard et al. [1],
these last workers emphasize that their results represent
the coupling (or interaction) of the NP and the stiff F-actin
polymers. Such an interaction dominated picture has also
been suggested by Wang et al. [19] and Vagias et al. [20].
The transport behavior of NPs in this crossover size limit
thus appears to be complicated by hopping effects, length-
scale-dependent entanglement forces and dynamics, and the
interaction of polymers and NPs. No clear understanding
exists of the various competing mechanisms, and we use
large-scale MD simulations to examine the role of entangle-
ments on NP dynamics in this crossover regime.
We simulate weakly interacting mixtures of NPs of

diameter σNP ¼ 1–15 (in units of σ, the monomer diameter)
and bead-spring polymer melts of fixed chain length N in
the range 10–400 (see Supplemental Material [21]) [22].
The interactions between two nonbonded polymer seg-
ments are described by the Lennard-Jones potential
truncated at rc ¼ 2.5σ. For this polymer model the entan-
glement chain length Ne ∼ 45, and dT (in units of σ) is in
the range dT ∼ 7 based on the transient caging of the
polymer center-of-mass motion [7], and dT ∼ b

ffiffiffiffiffiffi
Ne

p
∼ 10

where b is the Kuhn length, based on the entanglement
chain length [20]. The NPs are modeled as bare smooth
spheres made up of uniformly distributed monomers of
the size of a polymer segment with a number density
ρNPσ

3 ¼ 1. The NPs are athermal relative to each other,
while the polymer-NP interaction is tuned to be attractive
enough to permit miscibility [23]. The particle volume
fraction is φNP ¼ σ3NPMNP=ðσ3NPMNP þ σ3NMCÞ ¼ 0.1,
where MNP and MC are the numbers of NPs and polymer
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chains, respectively. Molecular dynamics simulations are
carried out using the Large Scale Atomic Molecular
Massively Parallel Simulator (LAMMPS) software [24].
The initial configurations of neat and NP-filled polymers
are prepared at random at a constant number density while
allowing for overlaps. The overlaps are removed by initially
using a soft potential, and then by gradually increasing the
strength of the potential [25]. After all overlaps are
removed, the system, which now has its full interactions,
is allowed to adjust its density at pressure P� ¼ 0 (a good
mimic for atmospheric pressure) and temperature T� ¼ 1.0
using the isothermal-isobaric ensemble. The systems are
then run at constant volume with a Langevin thermostat
with a weak damping constant Γ ¼ 0.1τ−1 to maintain
temperature. For larger N, P� ¼ 0� 0.05, whereas for
shorter N, P� ¼ 0� 0.1. Diffusion coefficients are
estimated from D ¼ limt→∞h½rcmðtÞ − rcmð0Þ�2i=6t ¼
ð1=6Þdh½rcmðtÞ − rcmð0Þ�2i=dt, which uses the mean-
squared displacement (MSD) of the center of mass of
the appropriate species. Both formulas gave identical
results within uncertainty for NP diffusion coefficients.
A caveat is in order about finite size effects. While the

largest boxes we consider have a lateral size L ¼ 66σ,
previous work [26–28] suggests that DðLÞ ¼ DðL → ∞Þ
−2.837 kT

6πηL due to long-range hydrodynamic effects for
particles larger than the fluid molecules. The corresponding
expression for particles smaller than the chains is not
available, and a detailed analysis is precluded by the
relatively large computational effort required even for
one L. Thus, while we estimate that our results for large
particles and short chains are 30%–50% smaller than in the
thermodynamic limit, we do not correct any of our results
for the sake of consistency.
The diffusion coefficients of nanoparticles smaller than

dT ∼ 7–10 [i.e., σNP ¼ 1, 3 and 5, respectively, Fig. 1(a)] in
long chain melts show that the relevant viscosity corre-
sponds to a section of the chain with NNP monomers that
satisfies σ2NP ¼ NNPσ

2. Using the SE equation with the
Rouse model viscosity η ¼ η1NNP (where η1 is the vis-
cosity of a monomer fluid at the same density) yields that
D�

NPσ
3
NP should be a constant, independent of chain length,

which is what is found [2,13]. For shorter chains the
data can be described by the Stokes-Einstein relationship
with the macroscopic viscosity of the chain fluid, i.e.,
D�

NP ¼ ðkT=fπησNPÞ ¼ ðkT=fπη1NσNPÞ, where we use
η ¼ η1N and f ∼ 4 [solid line in Fig. 1(a)]. An alternative
approach of using the melt viscosity rather than η ¼ η1N is
presented in Fig. 1(c), where ηfilled is the viscosity of the
filled melt [22]. The data for σNP ¼ 3 and 5 overlap for the
short chains, while the data for σNP ¼ 1 are a little higher.
Our results for these smaller NPs are in good agreement

with the predictions of the generalized Langevin equation
(GLE) theory of Yamamoto and Schweizer [Fig. 2(a)]. The
GLE approach is based on the mode-coupling idea that the
relevant slow dynamical variable is the bilinear coupling of
the NP and the collective polymer density fluctuations. The

original approach [18] was not self-consistent since it
assumed that the constraining forces on a particle relax
entirely due to the length-scale-dependent motions of the
polymer melt (constraint release regime). For entangled
melts, this is an accurate simplification when particles are
larger than dT , and SE behavior is predicted to be recovered
when the particle diameter reaches ∼10dT , which is well
beyond the chains lengths simulated in this work. However,
to treat the opposite limit of small particles, where
relaxation of the entanglement network is not required
for transport, the GLE approach has been extended to self-
consistently allow forces to also be relaxed by Gaussian
particle motion (see Supplemental Material [21]). The
important consequence of this refined approximation is
that the D�

NPσ
3
NP ¼ const result is obtained naturally for

long chains and small NPs [Fig. 2(a)].
More interesting are our data for NPs with sizes of

order of the entanglement mesh length (dT ∼ 7–10), i.e., for
8 ≤ σNP ≤ 15. Figure 1(b) shows that the data for these NPs
in the longer chain melts no longer follow the “universal”
plateau seen for small NPs. Apparently, for long chains
there are additional factors involved. Figure 1(c) shows
that the SE scaling of the diffusivity is not found for any of
these NPs, i.e., that D�

NPσNPηfilled is not a constant. This
behavior, especially for the intermediate sized particles
(8 ≤ σNP ≤ 15), disagrees with the ansatz of Brochard-
Wyart and de Gennes [12] that particle motion is essentially
fully coupled to chain motion, and hence SE-like behavior
is recovered, as soon as the particle diameter exceeds dT .
While the SE behavior is not recovered here, the chain
length dependence of the NP diffusion data is well
described by the GLE theory [Fig. 2(b)] across this
intermediate NP size range for all chain lengths.
These results for nanocomposites suggest that the chain-

scale dynamics do not control NP diffusion (no SE scaling).
However, the fact that the large N diffusivity of these
intermediate sized NPs does not reach the same plateau as
the small NPs [Fig. 1(b)] suggests that another effect, such
as entanglements, plays a critical role. To understand the
role of entanglements, we performed a series of simulations
by allowing the chains to cross each other while leaving the
NP-polymer interactions unaffected. The “chain-crossing”
simulations (see Supplemental Material [21]) were per-
formed at the same densities as the entangled chain model,
and show that the diffusion of NPs of σNP ¼ 10 [open
diamonds in Fig. 1(b)] track the universal behavior for
small NPs. This conclusively demonstrates that the extra
slowing down for these NPs and longer “noncrossing”
chains is due to chain entanglements.
As discussed in the introduction, some recent theoretical

ideas suggest that NPs with diameters ∼1–2dT may
undergo hopping controlled transport due to local, rare
fluctuations of the entanglement network [2]. We now
explore such hopping effects. As a first point, Fig. 1(d)
shows results for the time-dependent NPMSD for a series of
particle sizes. One sees an intermediate time non-Fickian
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regime though there is no extended power law scaling
behavior. The minimum apparent exponent, defined locally
as MSD ∼tx, varies from x ∼ 1 for the smallest particle to
∼0.4 for the largest particle. This behavior is reminiscent of
transient caging in supercooled liquids [29–36], but here
arises from transient trapping and slowing down of particle
motion due to emerging entanglement constraints. However,
from a supercooled liquid perspective where activation
barriers are high, a value of x ∼ 0.4 is not small, and
the NP is far from the idealized localization situation where
the MSD displays a transient plateau. In the same vein, the
probability distributions of particle displacement [Fig. 1(e)]
show no peaks at distances associated with a jump-like
motion, and the time-dependent non-Gaussian parameter

α ¼ 3
5
hr4i
hr2i2 − 1 is very small, with an amplitude typical of

normal, not supercooled, liquids [Fig. 1(f)] [29–36]. Addi-
tionally, it is much smaller than the non-Gaussian param-
eter for the melt chains. Thus, while particle motion is
characterized by an anomalous power law dependent MSD
at intermediate times, there is no evidence of NP hopping
(or any form of non-Gaussian dynamics) for these weakly
interacting polymer-NP mixtures. Thus, we conclude that
spontaneous fluctuations of the entanglement mesh (con-
straint release) in these moderately long chain melts may
be the most important mode of NP transport.
These physical conclusions are fully consistent with

the dynamically Gaussian GLE theory. A detailed study
will be presented elsewhere, but briefly we find that the
GLE predictions agree qualitatively with all aspects of
the simulation MSD data. This includes the prediction of
subdiffusive behavior, which becomes more pronounced as

10-2

10-1

100

10-1 100 101 102 103
D

∗ N
P
 σ

3 N
P

N/σ2
NP

(a)

1σ
3σ
5σ

10-3

10-2

10-1

100

101

10-2 10-1 100 101 102 103

D
∗ N

P
 σ

3 N
P

N/σ2
NP

(b)

1σ
3σ
5σ
8σ

10σ
10σ
15σ

10-2

10-1

100

101

102

103

100 101 102 103

D
∗ N

P
η f

ill
ed

σ N
P

N

(c)

15σ
10σ
 8σ
 5σ
 3σ
 1σ

10-6

10-5

10-4

10-3

10-2

10-1

100

10-1 100 101 102 103

P
(r

2
)

r 2

(e)

2e3
1e4
5e4
1e5

2e5
4e5
6e5
8e5

100

101

102

103

104

105

106

101 102 103 104 105 106 107

<
r

2 N
P>

 
σ N

P

t

 1 σ
 3 σ
 5 σ
 8 σ
10σ
15σ

(d)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

102 103 104 105 106 107

α

t

(f)

chain COM
NP

FIG. 1 (color online). (a)–(c) Terminal diffusion coefficient of NPs of different size, D�
NP, in melts of different N plotted in a scaled

form as discussed in the text. (a) NPs that are smaller than the entanglement mesh size. The blue line was fit to the large N and small
NP values with the prediction D�

NPσ
3
NP ¼ 2kTσ2=fπη1: (b) All of the NP data—in comparison to (a) the additional data are for larger

NPs, and σNP ¼ 10σ in melts that allow for chain crossing (open diamonds). TheD�
NP values for the chain crossing model are scaled by a

factor of 2 in order to compare with the noncrossing model (closed diamonds). (c) Data plotted in a Stokes-Einstein inspired form.
(d) Mean-squared displacement of NPs of sizes σNP ¼ 1–15 in polymer melts of length N ¼ 400. (e) Probability distribution of mean-
squared displacement of NPs during different time intervals from t ¼ 0 for N ¼ 200 and σNP ¼ 15 with time increasing going from left
to right. (f) The non-Gaussian parameter α for both the chains and NPs for the system discussed in (e). The longest relaxation times of
these chains are τ1 ∼ 2.6 × 105 from a Rouse mode analysis, which corresponds to the first peak of α.
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particle size increases, no wide power law regimes, and the
minimum value of the apparent exponent varying from
x ∼ 1 (Fickian) to ∼0.4 as the particle diameter grows from
1 to 15. There are no divergences or glass transitions of any
kind (e.g., as in the Lorentz model) since forces on a
particle always decay to zero at long times due to relaxation
of the polymer liquid.
For crosslinked networks, or in the hypothetical N → ∞

limit of polymer melts, the dynamical constraint release
motions arising from chain relaxations would be quenched,
and hence hopping should become the dominant channel of
transport when particles are larger than the entanglement
mesh length. Indeed, as will be discussed in a future
publication, NP motion shows clear signs of “quantized”
hopping in randomly crosslinked networks, where the
constraint release channel is fully eliminated. For experi-
mentally realizable entangled melts, the following combina-
tion of conditions appears to be necessary for hopping to

dominate: particles are sufficiently large that barriers are well
in excess of thermal energy, but not so large that this activated
and exponentially slow process is slower than dynamical
constraint release. Whether this is achievable for real entan-
gled melts with practical values of N=Ne is a quantitative
question with no a priori obvious answer. Regardless, we
believe that considerable interest remains in simulating much
longer N for NPs with diameters comparable to the tube or
entanglement mesh size to examine if such hopping phe-
nomena control NP motion in these circumstances.
We have also measured the chain diffusion constant by

following the polymer center-of-mass dynamics. Although
the N dependence of chain diffusivity is strong [Figs. 3(a)
and 3(b)], adding the two largest NP sizes σNP ¼ 10 and 15
only has a small effect on the polymer chain diffusion
[Fig. 3(c)]. Smaller particle sizes cause, at most, a 40%
change in the chain diffusion coefficient, implying that
chain motion is not significantly affected by the addition of
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NPs. For the most interesting larger particle sizes, note
there is virtually no change of the ensemble-averaged
polymer diffusion constant upon adding particles, consis-
tent with the fact that our particle loadings are small. This
also justifies an underlying theoretical approximation of the
GLE approach [18] for dilute NP systems. Presumably,
larger particle loadings and/or higher degrees of polymer
entanglement should lead to chain slowing as has now been
seen in several experiments [37].
In conclusion, our results clearly show that we have an

excellent understanding of the motion of NPs smaller than
the polymer’s entanglement mesh size for weakly interact-
ing NP-polymer systems. It is for sizes comparable to the
entanglement mesh where NP diffusion is strongly coupled
to entanglement dynamics. For these NP sizes we see no
conclusive evidence for hopping-controlled transport.
Rather, NP diffusion in this regime can be understood
essentially quantitatively based on the GLE theory where
polymer dynamical constraint release and length-scale-
dependent entanglement forces control NP mobility.
However, the hopping mechanism may play an important
role for NPs comparable to the entanglement mesh size if
they are dissolved in more strongly entangled melts, or
maybe when the NP-polymer interactions become attrac-
tive, as found in some experiments. Future simulations and
theory development are required to answer this question.
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