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We present a theory of topological edge states in one-dimensional resonant photonic crystals with a
compound unit cell. Contrary to the conventional electronic topological states, the modes under
consideration are radiative; i.e., they decay in time due to the light escape through the structure
boundaries. We demonstrate that the edge states survive despite their radiative decay and can be detected
both in time- and frequency-dependent light reflection.
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Introduction.—A topological insulator is an electronic
material that has a band gap in its interior like an ordinary
insulator but possesses conducting states on its edge or
surface. The surface states of topological insulators have
been extensively studied both in two-dimensional (2D) and
three-dimensional (3D) materials [1]. Recently an untrivial
link has been revealed between such seemingly distinct
systems as topological insulators, one-dimensional (1D)
quasicrystals, and periodic 1D crystals with compound unit
cell [2–5] (see also the viewpoint Ref. [6]). In particular, it
has been demonstrated that the 1D Aubry-André-Harper
(AAH) model, or a “bichromatic” system (both incom-
mensurate and commensurate), exhibits topological proper-
ties similar to those attributed to systems of a higher
dimension [2,3]. This model allows states at boundaries
between two distinct topological systems. The system is
described by a 1D tight-binding Hamiltonian with nearest-
neighbor hopping and an on-site potential. In the gener-
alized AAH model both the hopping terms and on-site
potential are cosine modulated [5]. It is the modulation
phase that adds the second degree of freedom and permits
one to relate the descendent 1D model with a 2D “ancestor”
system that has a 2D band structure and quantized Chern
numbers. In this Letter, instead of quasiparticles that
tunnel from one site to another, we consider a 1D sequence
of sites with resonant excitations long-range coupled
through an electromagnetic field [7]. Such a system is
open, its eigenfrequencies are complex, and its eigenstates
are quasistationary due to the radiative decay. Hence,
the resonant optical lattice stands out of the standard
classification of topological insulators, developed for
conservative and Hermitian electronic problems [8]. We
show here that this 1D bichromatic resonant photonic
crystal demonstrates the topological properties in spite of
being open and formulate general conditions for the
edge state existence. We also demonstrate how the
radiative character of the system opens new pathways to
optical detection of the edge states. This provides an
important insight into the rapidly expanding field of the

electromagnetic topological states in photonic crystals
[9,10], coupled cavities [11,12], waveguide arrays
[13–15], metamaterials [16], and plasmonic chains [17].
Model.—We consider a 1D resonant photonic crystal

consisting of alternating layers A and B. The dielectric
constant εb of the material B is frequency-independent
while the thin layer A is characterized by single-pole
amplitude coefficients of light reflection and transmission,

rAðωÞ ¼ − iΓ0

ω − ω0 þ iðΓ0 þ ΓÞ ;

tAðωÞ ¼ 1þ rAðωÞ: (1)

Here, ω is the light frequency, the resonance frequency ω0,
radiative (Γ0) and nonradiative (Γ) decay rates are three
basic parameters of the excitation in a single layer A
sandwiched between semi-infinite layers B. The model can
be applied to excitonic [18], dielectric and plasmonic
multilayers [19,20], coupled waveguides [21], and even
to nuclear excitations in multilayers containing different
isotopes of the same element, see the review [7]. The
multilayer system can be equivalently described by a set of
coupled equations for the resonant dielectric polarizations
Pn of the layers A (n ¼ 1; 2….), as follows

ðω0 − ωÞPn − iΓ0

X
n0
Λnn0Pn0 ¼ 0; (2)

where Λnn0 ¼ eiqjzn−zn0 j, q ¼ ω
ffiffiffiffiffi
εb

p
=c is the light wave

vector in the material B and zn is the center of the nth
layer A [18]. Following Ref. [4] we take a bichromatic
structure with the A layers centered at

zn ¼ d½nþ η cos ð2πbnþ ϕÞ�; (3)

where b is a dimensionless parameter of the system, d is the
period in the primary lattice, and η is a small modulation
amplitude. Figure 1 illustrates the structure with b ¼ 1=3
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representing a periodic photonic crystal with the
period D ¼ 3d.
Topological properties of the lattice.—Let us relate the

1D multilayer system with a 2D “ancestor” lattice with the
sites at z ¼ zn and x ¼ m ðm ¼ 0;�1…Þ, where x is an
extra axis. To introduce the site polarization Pnm of the 2D
lattice, we replace Pn by Pn;ϕ in Eq. (2), consider ϕ as the
wave vector component along the x direction, and define
Pnm by Pn;ϕ ¼ P

m0e−im0ϕPn;m0. After multiplying Eq. (2)
by eimϕ=2π and integrating over ϕ from 0 to 2π, we obtain a
2D counterpart of Eq. (2) where Λnn0 is replaced by

Λnm;n0m0 ¼ eiqdjn−n0jeiπbðm0−mÞðnþn0Þ

× Jm−m0 ½2ηqd sinðπbjn − n0jÞ�; (4)

and Jl is the Bessel function of the order l. These
coefficients retain the long-range coupling distinct from
the nearest-neighbor AAH model [4]. The phases that are
gained along a closed path in the clockwise and counter-
clockwise directions are different. This corresponds to the
broken time inversion symmetry in the 2D “ancestor”
system and can be interpreted as a presence of an effective
magnetic field with the flux per unit cell equal to 2πb. In
the following we set b to be a rational number M=N in
which case the structure is periodic with the period
D ¼ N d and contains N layers A in the unit cell. The
structure with irrational b can be smoothly transformed to
that with close rational b conserving the edge state in the
given bulk excitation gap [22]. The impact of the fractal
band structure of resonant photonic quasicrystals [23] on
the topological properties is yet to be uncovered.
The topological features of the model are revealed by the

nontrivial Chern numbers of allowed zones of the infinite
structure. The propagating solutions satisfy the Bloch
condition PlþsN ðk;ϕÞ ¼ eiskDPlðk;ϕÞ, where the index
l ¼ 1; 2…N enumerates the layers A in the unit cell,
s ¼ 0;�1… and k is the wave vector z component defined

in the interval between −π=D and π=D. The polarizations
Plðk;ϕÞ satisfy the equations

P
l0Hll0Pl0 ¼ ℏðΩ − ω0ÞPl,

where the Hermitian matrix,

Hll0 ¼ ℏΓ0

e−ikDsignfl−l0g sin qzll0 þ sin qðD − zll0 Þ
cos kD − cos qD

;

plays the role of the Hamiltonian (zll0 ¼ jzl − zl0 j). Due to
the time-inversion symmetry, the eigenfrequencyΩðk;ϕÞ is
an even function of k. It is convenient to make a phase shift
in Eq. (3) replacing ϕ by ϰ − bπ þ π=2 and defining the
“wave vector” ϰ in the interval ð−π; π�. The shift allows us
to disclose an important symmetry property of the system:
the structure corresponding to a particular value of ϰ is
spatially inverted under the reversal ϰ → −ϰ. This means
that the eigenfrequency Ωðk; ϰÞ is also even in ϰ. Another
property Ωðk;ϰþ2πbpÞ¼Ωðk;ϰÞ follows from the invari-
ance of the infinite system under the shift n → nþ p
in Eq. (3).
The Chern number Cν of the band ν with

eigensolutions Plðk; ϰÞ is defined in a standard way
as

R
π−π dϰ

R π=D
−π=D dkð∂kAϰ − ∂ϰAkÞ=ð2πiÞ, where Ak≡P

lP
�
l ∂kPl, and Aϰ is defined similarly. As shown below,

the structure must lack an inversion center in order to have
nontrivial Chern numbers and topological edge states. In
case of two layers A per unit cell one can choose the unit
cell in such a way that its center is in the middle between
these two layers. Such a unit cell possesses an inversion
center. Thus, we need at least three layersA in the unit cell.
Figure 2(a) presents the dependence of the edges of allowed
bands on the wave vector ϰ for the lattice with b ¼ 1=3,
D ¼ 3d and the primary period satisfying the resonant
Bragg condition d ¼ λ0=2 [7]. The corresponding Chern
numbers are equal to −1, 2, and −1. The parameter ϰ when
adiabatically varied leads to the Thouless pump of the states
[4,24]. Thus, the Chern number of the band coincides with
the number of left-edge states that enter the corresponding
band when ϰ changes from −π to π minus the number of
those that leave the band. Real parts of the eigenfrequencies
of the left- and right-edge states of the structure are depicted
by solid and dashed lines in Fig. 2(a). Next we give the
details of how these states are found.
Radiative edge states.—Direct calculation of the

eigenfrequencies ω from Eq. (2) is a numerically challeng-
ing problem of solution of a transcendent equation
with ω present in the phase factors eiqdjzn−zn0 j through
q ¼ ω

ffiffiffiffiffi
εb

p
=c. Instead, we study properties of the structure

reflection coefficient rðωÞ as a function analytically con-
tinued onto the complex plane. As an additional advantage,
the coefficient rðωÞ can be readily evaluated using the
transfer matrix technique [18] and is directly accessible in
experiments on photonic crystals. It is instructive to start
from the analytical properties of the reflection coefficient
r∞ðωÞ from the semi-infinite structure. This function of ω
has poles indicating the edge states and discontinuities

FIG. 1 (color online). Illustration of the periodic structure with
three layersA in the unit cell. Vertical lines indicate theA layers,
the labels B1, B2, and B3 mark the barriers of different thick-
nesses, and dl ¼ zlþ1 − zl where l ¼ 1, 2, 3 and z4 ¼ z1 þD.
The solid line shows the electric field distribution for the state
localized on the left edge, the dashed line corresponds to the
right-edge state. The parameters used are d ¼ λ0=2 (λ0 ¼
2πc=

ffiffiffiffiffi
εb

p
ω0), ϰ ¼ ϕ − π=6 ¼ π=2, and η ¼ 0.2=π.
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across the branch cuts on the real axis related to allowed
bands of the corresponding infinite structure. In the
reflection coefficient from the finite structure the cuts
are replaced by poles due to the Fabry-Pérot interference.
In thick structures the poles of rðωÞ related to the edge
states are close to those of r∞ðωÞ and, therefore, can be
easily distinguished.
We characterize each structure layer by a 2 × 2 transfer

matrix linking the amplitudes of the right- and left-going
waves (denoted by þ and −, respectively) at the right layer
edge with those at the left one. For a single layer j ¼ A, B,
this matrix reads

T̂ðjÞðωÞ ¼ 1

tjðωÞ
�
t2jðωÞ − r2jðωÞ rjðωÞ−rjðωÞ 1

�
; (5)

where the single layer reflection and transmission coef-
ficients rj, tj are given by Eq. (1) for a resonant layer A
while, for a spacing layer B of the width L, they are rB ¼ 0,
tB ¼ eiqL. The total transfer matrix of the structure T̂ðNÞðωÞ
is a product of individual transfer matrices through N
periods. The reflection coefficient from the left reads [18]
rNðωÞ ¼ −TðNÞ

−þðωÞ=TðNÞ−−ðωÞ. As follows from Eqs. (1) and

(5) the transfer matrix elements for a single layer have no
poles except for the trivial pole ω0 − iΓ. Hence, the pole Ω
of rNðωÞ can be found from the condition TðNÞ−−ðΩÞ ¼ 0.
This condition allows the existence of light waves going
away from the system in the absence of incident waves, and
thus it indeed determines the eigenmodes. For real ω the
reflectance and transmittance are bounded by unity.
Therefore, all the pole frequencies Ω should have nonzero
imaginary parts and the corresponding eigenstates decay
in time.
The similar consideration can be applied to a semi-

infinite structure. Its reflection coefficient is expressed in
terms of the transfer matrix through one period as

r∞ðωÞ ¼
eikðωÞD − Tð1Þ

þþðωÞ
Tð1Þ
þ−ðωÞ

; (6)

where eikðωÞD is an eigenvalue of the matrix T̂ð1ÞðωÞ and the
polariton wave vector kðωÞ is chosen to have positive
ImkðωÞ. The poles of r∞ðωÞ are found from

Tð1Þ
þ−ðΩÞ ¼ 0; jTð1Þ−−ðΩÞj < 1: (7)

The first condition means that only the outgoing wave is
present on the left side of the structure, while the second
condition ensures the eigenstate to decay spatially inside
the structure. Hence, the conditions (7) select modes
attached to the left edge. To find the right-edge modes
one should replace the first condition with Tð1Þ

−þðΩÞ ¼ 0.
Results and discussion.—First we briefly consider a

structure with b ¼ 1=2 and two resonant layers in the
period. Its unit cell can be chosen to have a center of
symmetry. In this case Tð1Þ

þ− ¼ −Tð1Þ
−þ (see e.g. Ref. [25]); at

the frequency of a possible pole of r∞, the off-diagonal
elements of matrices T̂ð1Þ and T̂ðNÞ ¼ T̂ð1ÞN are zeros, and
the reflection coefficient rN ¼ −TðNÞ

−þ=TðNÞ−− vanishes rather
than having a pole and, thus, the edge states are absent.
Concomitantly, in the structure with b ¼ 1=2 the eigenso-
lutions Plðk; ϰÞ of the Hamiltonian Hll0 can be chosen as
satisfying Plðk; ϰÞ ¼ Plðk;−ϰÞ. As a result, the Berry
curvature is odd in ϰ and all the Chern numbers are zero.
The absence of radiative edge states is characteristic for
centrosymmetric optical lattices. The conventional elec-
tronic lattices may have edge (zero-energy) modes even for
a centrosymmetric unit cell, e.g., in the Su-Schrieffer-
Heeger model with two sites per unit cell [24].
Now we turn to the lattice with b ¼ 1=3 comprising three

resonant layers per period. The dependence of the spectrum
on the auxiliary wave vector component ϰ is presented in
Fig. 2. We fix the attention on the narrow spectral range
around the frequency ω0 where the system has three
allowed zones separated by two band gaps [26]. The bands
are 2π=3 periodic, in agreement with the discussed sym-
metry property of the Bloch states. Each of the three
indicated Chern numbers differs from 0 and their sum gives

FIG. 2 (color online). (a) The band structure as a function of the
“ancestor” lattice wave vector ϰ ¼ ϕ − π=6 characterizing the
distribution of threeA layers in the unit cell. The gray regions are
the allowed polariton zones, while the white regions are the stop
bands. The lines show the dependence of the real part of the
frequency of the left-edge (solid) and the right-edge (dashed)
mode. Circles indicate points where the edge modes are absent.
The star shows the value of ϰ ¼ π=2 used in Fig. 3. (b) Depend-
ence of the edge mode decay rate ImΩ on the parameter ϰ. (c) The
ϰ dependence of the eigenstate spatial decay constant
ImfkðΩÞgD. The calculation is performed for d ¼ λ0=2,
b ¼ 1=3, η ¼ 0.2=π, and Γ ¼ 0.
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zero. As a consequence the structure possesses two edge
modes with the energies in the band gaps. The real parts of
mode eigenfrequencies are shown by lines in Fig. 2(a), the
solid and dashed lines correspond to the mode localized on
the left and right edges, respectively. Figure 2(a) demon-
strates that the edge modes traverse the band gaps when the
parameter ϰ is varied from −π to π. As expected, the
inversion symmetry ϰ → −ϰ swaps the left- and right-edge
modes. The fact that the edge states for the values ϰ and −ϰ
are localized at opposite interfaces reflects the “topological
protection” of the lattice (n, m).
Since the optical lattice is open the edge eigenmodes are

nonstationary. The imaginary part of eigenfrequencies and
the edge-mode spatial decay per unit cell, ImfkðΩÞgD, are
shown in Figs. 2(b) and Fig. 2(c). The figures demonstrate
that the structure has two edge eigenmodes for all values of
ϰ excepting six special points. Particularly, for ϰ ¼ 0 and π
both edge states vanish: ImfkðΩÞgD → 0, ImΩ → 0. This
occurs because, for these particular values of ϰ, the
structure is invariant under the reversal ϰ → −ϰ and hence
centrosymmetric. For the other four special points ϰ ¼
�π=6 and �7π=6, the spacing between two adjacent
resonant layers A equals to λ0=2 and, as a consequence,
one of the edge states disappears. For the most values of ϰ
the edge modes are well defined and localized within a few
structure periods. Figure 1 shows the spatial distribution of
the absolute value of the edge-mode electric field for the
five-period structure with ϰ ¼ π=2.
Now we focus on the problem of the edge states

detection. For example, we consider the semi-infinite
structure with ϰ ¼ π=2 marked by the star in Fig. 2. For
this value of ϰ the central allowed band shrinks and the
values of ReðΩ − ω0Þ have opposite signs for the left- and
right-edge modes, see Fig. 2. The reflection spectrum
jr∞ðωÞj2 for the semi-infinite structure is shown in
Fig. 3(a). The black curve corresponds to the absence of
nonradiative damping. In this case the edge state does not
reveal itself in the spectrum. For Γ > 0 the edge state shows

up as a dip in the reflection spectrum and a peak in the
absorption spectrum. Similar approach has been used in
Refs. [27,28] to detect conventional Tamm states [29,30] in
2D centrosymmetric photonic crystals. The position and
half-width of the reflectivity dip are determined, respec-
tively, by the real and imaginary parts of Ω,

Ω ¼ ω0 − 2Γ0 sinð3πη=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ e−3iπη

p − iΓ: (8)

An alternative method of detecting the edge modes is the
time-domain optical spectroscopy. The system can be
described by the time-resolved reflection response ρðtÞ ¼R
∞−∞ rðωÞ expð−iωtÞdω=ð2πÞ induced by the short δ-pulse

[31]. Such technique is sensitive both to the amplitude and
phase of the reflection coefficient. The edge state should
reveal itself as an exponential contribution to the response
function given by the residue of r∞ðωÞ at the frequency Ω,

ρΩðtÞ ¼ −Γ0

ð1 − e3iπηÞ2
ð1þ 2e3iπηÞ3=2 e

−iΩt: (9)

Thus, the information about the phase missing in jrðωÞj2
shows up in ρðtÞ. In Fig. 3(b) the response function ρ∞ðtÞ is
presented in the semi-logarithmic scale. It indeed contains
an exponentially decaying contribution that perfectly
agrees with Eq. (9) (see dashed curves). This contribution
is already present for Γ ¼ 0 although the edge state is not
revealed in the stationary reflectivity. At longer times the
exponential decay of the edge state is masked by the t−3=2
power-law contribution of the Bloch-states continuum, the
black curve in Fig. 3(b) [31].
To summarize, we have demonstrated the presence of

radiative topologically protected edge states in 1D resonant
photonic crystals with a compound noncentrosymmetric
unit cell. The edge states are shown to survive despite the
long-range light-induced coupling of the resonances and

FIG. 3 (color online). (a) The stationary reflection spectra jr∞ðωÞj2 for the semi-infinite structure with ϰ ¼ ϕ − π=6 ¼ π=2,
η ¼ 0.2=π, Γ0=ω0 ¼ 3 × 10−3 and various values of the nonradiative damping Γ. (b) The short pulse response function ρðtÞ of the
structure. The dashed lines describe the edge mode contribution to the reflection and are plotted after Eq. (9).
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finite lifetime of their radiative decay. The states are
manifested in the stationary reflection spectra of the
structure with finite nonradiative losses as well as in
the time-dependent response to the short optical pulse.
The plasmonic lattices with high enough radiative decay
rate Γ0 are preferential for the observation of edge
states [19].
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