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It is well known that, generically, one-dimensional interacting fermions cannot be described in terms of a
Fermi liquid. Instead, they present a different phenomenology, that of a Tomonaga-Luttinger liquid: the
Landau quasiparticles are ill defined, and the fermion occupation number is continuous at the Fermi energy.
We demonstrate that suitable fine tuning of the interaction between fermions can stabilize a peculiar state of
one-dimensional matter, which is dissimilar to both Tomonaga-Luttinger and Fermi liquids. We propose to
call this state a quasi-Fermi liquid. Technically speaking, such a liquid exists only when the fermion
interaction is irrelevant (in the renormalization group sense). The quasi-Fermi liquid exhibits the properties
of both a Tomonaga-Luttinger liquid and a Fermi liquid. Similar to a Tomonaga-Luttinger liquid, no finite-
momentum quasiparticles are supported by the quasi-Fermi liquid; on the other hand, its fermion
occupation number demonstrates a finite discontinuity at the Fermi energy, which is a hallmark feature of a
Fermi liquid. A possible realization of the quasi-Fermi liquid with the help of cold atoms in an optical trap

is discussed.
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Introduction.—An important goal of modern many-body
physics is the search for exotic states of matter. Appropriate
examples are spin liquids [1-3], the Majorana fermion
[4-8], topological insulators, semimetals [9—11], and
others. A peculiar state of one-dimensional (1D) fermionic
matter deviating from known types of interacting Fermi
systems is the subject of this Letter.

Let us remind ourselves that the most basic model of
interacting fermions is that of the Fermi liquid. It success-
fully describes a variety of interacting fermion systems
(e.g., electrons in solids, atoms of helium-3) [12]. The
approach is based on the Landau conjecture that both the
ground state of a Fermi liquid and its low-lying excitations
are adiabatically connected to states of a noninteracting
Fermi gas. If the interaction is weak, this hypothesis
implies that the perturbation theory in the interaction
strength is valid. The latter supplies theorists with a tool
to study specific examples.

A known system for which the Landau conjecture fails
is a 1D liquid of interacting fermions. The interacting
1D fermions constitute a separate universality class, the
so-called Tomonaga-Luttinger liquid [13,14]: unlike a
Fermi liquid, the Tomonaga-Luttinger ground and excited
states have zero overlap with the corresponding noninter-
acting states, and the Tomonaga-Luttinger liquid properties
cannot be calculated perturbatively with interaction
strength as a small parameter.

In 1D the Tomonaga-Luttinger liquid is a generic state of
matter. However, recent progress in fabrication and control
over the properties of many-particle systems allows us to
look for more fragile types of 1D correlated liquids.
Specifically, consider a gas of Fermi atoms in a 1D trap

0031-9007/14/112(10)/106403(6)

106403-1

PACS numbers: 71.10.Pm

[15]. Tt is within modern experimental capabilities to vary
the effective interaction constant of optically trapped atoms,
and even tune the constant to zero [16,17]. Below we will
demonstrate that such nullification of the effective coupling
constant does not imply vanishment of all microscopic
interactions. Some residual interactions remain, and in 1D
they stabilize a peculiar state of matter, which we propose
to call a quasi-Fermi liquid. The latter state appears to be a
hybrid of both Fermi and Tomonaga-Luttinger liquids: its
ground state is perturbatively connected to the ground state
for free fermions, yet the perturbatively defined quasipar-
ticles do not exist. That is, in the case of a quasi-Fermi
liquid, the Landau conjecture is valid only for the ground
state, but not for excitations. Of course, there is nothing
special about cold atoms, and the quasi-Fermi liquid may
be realized in other fermion systems, which allow adequate
fine tuning of the coupling.

The presentation below has the following structure. First,
we formally introduce our model. Second, the self-energy
is evaluated perturbatively, which allows us to determine
both the quasiparticle residue and the occupation number
corrections. Third, analyzing these quantities we will be
able to define the quasi-Fermi liquid as a distinct state of
fermionic matter. Fourth, we discuss the possible imple-
mentation of such a quantum liquid using optically trapped
cold atoms. Finally, we formulate our conclusions. In the
Supplemental Material [18] we present the extension of our
calculations beyond second-order perturbation theory, and
discuss other subtleties.

The studied model.—One-dimensional interacting fer-
mions are commonly described by the Tomonaga-Luttinger
Hamiltonian:
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Hry = Hyin + Higs (D
Hyy = ivp / dx(cy{ VL — i Vyr:), ()

Hiy=g / dxpypr, 3)

where v, is the field operator for the right-moving (p = R)
and left-moving (p = L) fermions, operators p, = 1wy,
are the densities of the left and right movers, v is the Fermi
velocity, and g is the coupling constant. Colons denote the
normal ordering.

The Tomonaga-Luttinger liquid differs from the Fermi
liquid: the perturbatively defined quasiparticles are absent,
the Fermi occupation number n; = (c,,c,) has no dis-
continuity at the Fermi point, and the Tomonaga-Luttinger
ground state has zero overlap with the free fermion
ground state.

The culprit responsible for these abnormalities is the
fermion-fermion interaction H;,, which is marginal in the
renormalization group sense. Perturbation theory in orders
of ghas additional divergences absent in higher-dimensional
systems. For example, the Matsubara single-particle self-
energy is equal to [19-21]

2
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where the ellipsis stands for the less singular terms, p = +1
(p = —1) for the right-moving (left-moving) fermions, and
A is the ultraviolet cutoff. This self-energy corresponds to
the following expression
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for correction to the quasiparticle residue Zf, =1 — 525, .
The correction diverges for small v and k. As a result, the
conventional Fermi quasiparticles are ill defined, and the
occupation number function has a power-law singularity
instead of the discontinuity. The properties of Hyy , Eq. (1),
are now well understood [13,14].

However, it is sometimes required to include irrelevant
operators into consideration. There are two least irrelevant
operators:

Ha= o, [ @l (W) (T): + (Vi) (Tl ©)

Hy i [ axlpalvl (Fw0): = (T
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Here H, is the quadratic correction to the linear dispersion
of the fermions, and H/  is the irrelevant interaction. Both
H, and H;  have a scaling dimension of 3 (the dimension
of the gradient operator is 1, each field operator has a
dimension of 1/2). Other irrelevant operators have higher
scaling dimensions; therefore, their effects are less
pronounced.
Recently, the Hamiltonian

H = Hyy, + Hy + Hi, (8)

and its modifications have been investigated actively
[22-40]. These studies have demonstrated that the com-
bined effect of the marginal and the irrelevant operators has
important and measurable consequences for a system’s
properties.

In this Letter we will discuss the model of the 1D
fermions without the marginal interaction at all:

Hyi = Hyy + Hy + Hi, ©)

where “ii” stands for “irrelevant interaction.” We may name
two examples where H;; is applicable. First, consider cold
Fermiatomsina 1D trap. Under rather general conditions the
suitable Hamiltonian is given by Eq. (1), see Refs. [17,41].
However, the interaction between the atoms is highly
adjustable [16,17], which may be used to our advantage:
below we will offer an argument suggesting that the system
parameters can be tuned in such a manner that g [or, more
precisely, renormalized coupling ¢ = g+ O((¢)?)]
vanishes, but ¢ # 0.

Our second case requires no fine tuning. Using the
unitary transformation of Ref. [42], it has been demon-
strated that the Tomonaga-Luttinger Hamiltonian with
nonlinear dispersion, Eq. (8), may be mapped [24,26,34]
on Hamiltonian H;; (see also Ref. [43]). Therefore, the
properties of H;; are important for the theoretical descrip-
tion of the generic model H.

Superficially, one expects that, since H;; has only the
irrelevant interaction, it describes a kind of 1D Fermi
liquid. Indeed, using perturbation theory, we will demon-
strate that the correction to the fermion occupation number
n¥ is finite and small. However, in a drastic departure from
the Fermi liquid picture, the quasiparticle residue correction
diverges on the mass surface. Thus, Hamiltonian Hj;
describes a state of 1D matter that lies halfway between
the Fermi liquid and the Tomonaga-Luttinger liquid: n{ has
finite discontinuity at the Fermi energy, but no perturba-
tively defined quasiparticles exist. This is our quasi-Fermi
liquid.

Self-energy correction—To implement the outlined
plan, we must calculate the self-energy. For definiteness,
consider the self-energy for right movers. The correspond-
ing diagram is shown in Fig. 1.
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FIG. 1. The leading self-energy correction diagram. The solid
lines with arrows and L, R chirality labels correspond to the
fermion propagators. The wiggly lines are irrelevant interactions.

The expression that must be evaluated is

Zf,ib = 2T2 Z (Zq 2k Gf 0Q iv—iQ
iQ,i/ Q.4
L0 L0
x Gq 0,V Gq iQ+i/* (10)
In this equation |, - - (= J(dk/2x) - - -; the free Matsubara

1

propagator is Gk = (iw—¢;)7!, where the fermion

dispersion is & = pvpk + vj-k*. The factor (2k —2g)?
appears because each interaction line contributes a factor
of ¢(2k —2g) to the diagram. The overall minus sign
accounts for the presence of a single fermion loop.
Calculating the momentum integrals we assume that

la|. QI <A <kp=-—- (I

Up
20
where kj is the Fermi momentum. This way we may avoid
complications arising from spurious zeros of &}, which are
located at k = —2pky.

Performing the standard summation over iQ and iv and
taking the limit 7 — 0 we find

= () [, (4= 20P100-eh) 1=l o)
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(12)

For our purposes it is convenient to evaluate the imaginary
part of the retarded self-energy:

e J—— /Q (g =24710(~<}) ~0(ek o)

x [0(ef_o —€f) —0(ef_o)lo(v—ef o — €l +efo).

(13)

Now we integrate over Q:

o\
i, =~ [ S ota) - 0(q - 0
x [0(el_p — ) = O(ef_p)]s (14)

where Q*(g) delivers zero to the argument of the delta
function in Eq. (13):

Av

R TR A =

Av=v—¢€R  (15)

Thus, we need to evaluate the integral

k—q)°|0(e - k— Q"
- [ e ) 0
0 vr + vk — q)
where the upper limit of the integration ¢* ~ —Av/2vp

satisfies the equation ¢g* = Q*(g*). It is easy to check that

O(e;_o —€q) = 0(Q*[vp — vE(2g = 0%)]) = 6(Q"). (17)
Further, analyzing Eq. (15), we determine that the sign of

Q" coincides with the sign of (¢f — v). Consequently,
O(ek_, —€h) = 0(ef —v), (18)

where the function on the right-hand side is independent of
the integration variable g.

The second step function 6(k — Q*) in Eq. (16) can be
evaluated easily near the mass surface v = f. When the
mass surface is approached, Q* — 0; consequently,
Ok — Q%) = 0(k).

Since both step functions are independent of the inte-
gration variable g, the integral I can be trivially evaluated to
the lowest order in v — 8k Keeping the most singular term,
we derive

(g'k)?

R _
ImX}, = — A0l
F

(ef —v)[0(ef —v) —O(k)] + 6%, (19)

where 5 stands for less singular terms. To obtain ReXR, we
use the Kramers-Kronig relations. For the first term in
Eq. (19) the Kramers-Kronig integral can be easily calcu-
lated analytically (with A playing the role of the high-
energy cutoff):

17\2 _ R i
SR ~ (dk) (y_gf)ln<w>+.., (20)

e 4207 vpA
The less-singular contribution due to 6% is replaced by the
ellipsis.

Equation (20) resembles Eq. (4): both have singularities
at the mass surface. Yet, there is an important difference:
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the expression in Eq. (20) has an extra k? factor, which acts
to weaken the singular contribution at small k. We will see
that the peculiar properties of our system may be traced
back to this feature of the self-energy.

The quasiparticle residue [44]

1
ZRk) = ——— 21
R N .

OZR. (dk)? . (v—eR+i0
== 1 k 22
v A% " vr/A * @2)

vanishes for any finite k due to the divergence of 9Z&, /Ov on
the mass surface. Thus, like the Tomonaga-Luttinger model,
our system does not support the perturbatively defined
quasiparticles. However, since the interaction is irrelevant,
in the Matsubara domain OXF /Ov remains finite, while the
expression in Eq. (5) diverges. The divergence is sensitive to
temperature: if one replaces the step functions in Eq. (13) by
appropriate Fermi functions, the resultant InXX, becomes a
continuous function of its arguments. Consequently, ReZX,
becomes finite. Note, also, that Eq. (22) does not contain v
explicitly. Thus, the destruction of the quasiparticles occurs
even for systems with linear dispersion, provided that the
interaction is nonzero ¢ # 0.

Despite the absence of the quasiparticles, the fermionic
occupation numbers nf = (cj]kc k) remain well defined.
This is not surprising: any finite-order correction to a
ground-state matrix element due to irrelevant interaction is
finite (since Z; is a property of an excited state, it is exempt
from this rule). To calculate 6n} explicitly we start with
the formula nf = — [° (dv/7)ImGR, 1. Therefore, the
second-order correction is equal to

0 dv

onf = = / —Im[(Gr!) 2R . (23)
—vpA T

Substituting the expressions for G and =&, it is easy to

show that

roosr _ (G2 O [ (v—ef +i0\]*
(Gret ) 2“ret - 871'2’1}%,- 81/ In ’UFA + ) (24)

where, as above, the ellipsis stands for the less-singular
contributions to X,. With the help of this formula the
integral in Eq. (23) can be trivially evaluated

k)? ek
onf ~ 4(“1;32 0(eX) In <UF_kA> +e (25)
F

which is finite and small for any |k| < A, provided that ¢’
is small.

Quasi-Fermi liquid.—The calculations presented above
prove that the quasi-Fermi liquid of 1D spinless fermions
constitutes a distinct state of matter. Indeed, it is not a

Tomonaga-Luttinger liquid: since 5n§, Eq. (25), is small,
the quasi-Fermi liquid occupation number is discontinuous
at the Fermi energy, while the Tomonaga-Luttinger’s n} is
continuous. [This dissimilarity is a consequence of the fact
that the marginal interaction in the Tomonaga-Luttinger
Hamiltonian induces a stronger singularity of the self-
energy diagram than the singularity of Eq. (20). As a result,
for the Tomonaga-Luttinger liquid the occupation number
correction diverges for small k.]

On the other hand, the state of matter we are dealing with
is not a Fermi liquid because it has no perturbatively
defined fermionic quasiparticles. (Heuristic nonperturba-
tive construction of excitations for Hj; is discussed in the
Supplemental Material [18].) However, the system retains
certain features of the Fermi liquid: as we have mentioned
in the previous paragraph, the occupation number exhibits a
finite discontinuity at k = 0. This discontinuity exists even
though the quasiparticles do not.

Let us now discuss the experimental identification of the
quasi-Fermi liquid. Because of its peculiar nature, the quasi-
Fermi liquid may present itself in experiment as an ordinary
Fermi liquid, unless the measurements are done at sufficiently
high energy. Indeed, formally, the correction to the quasi-
particle residue diverges for any finite k; however, the
divergence becomes progressively weaker as k approaches
the Fermi point.

To appreciate the latter point imagine that the single-
fermion spectral function is measured, and the quasiparticle
residue is extracted. For an experimental apparatus with
finite resolution width Q the measured value of 5Z5< is
never divergent

'k)? . [(vpA
6772 = 4(5[ 23% In <%> < co. (26)

In this expression the divergence of 6Z%, Eq. (22), is cut at
the energy scale ~€Q. Nonetheless, it is possible that
|6Z8€| > 1, provided that k is not too small: k > k*,
where £ is equal to

2
kX = _ AVF (27)

d\/in(s)

The quantity k* defines the crossover scale: for momenta
smaller than £* the experimental behavior of the system is
indistinguishable from the usual Fermi liquid. Indeed,
|k| < kX< |6ZR<| < 1. Thus, the characteristic divergence
of the quasiparticle residue may be measured only for
momenta k in the interval k* < |k| < A. If the resolution is
so poor that £ > A, the experimentally measured behavior
of the system is indistinguishable from the Fermi liquid for
any k. This imposes a restriction on £: it has to be smaller
than Q. = vpAexp[—(2zvy/g A)?]. Therefore, unless
we have an apparatus with exponentially sharp resolution,
the phenomenology of the quasi-Fermi liquid may be
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observed only if ¢ is not too small. However, at larger ¢
our perturbation theory becomes less accurate. Can the
quasi-Fermi liquid survive in the nonperturbative regime?
We hypothesize that the quasi-Fermi liquid, much like
Fermi or Tomonaga-Luttinger liquids, constitutes its own
separate universality class, and the quasi-Fermi liquid
phenomenology extends beyond the small-¢' region.

Cold atoms.—Finally, let us discuss the possible imple-
mentation of the quasi-Fermi liquid with the help of cold
fermion atoms in a trap [15]. To characterize the gas, instead
of using a full interatomic potential V(x), the interactions in
such systems are modeled by an effective delta-function-like
potential with the corresponding coupling g. Such formalism
is equivalent to our H,, [see Eq. (3)]. Experimentally, it is
possible to control the magnitude and sign of the coupling g.
Moreover, g can be nullified. When this nullification occurs,
however, the atoms will not behave as a noninteracting gas.
Indeed, the vanishing of H;,, does not imply the vanishing of
the irrelevant H; ,, which drives the system toward the quasi-
Fermi liquid.

To be more specific, consider the following toy
model: a 1D fermions gas with weak interaction
[ dxdx'V(x — x")p(x)p(x"). For such a situation the effec-
tive low-energy Hamiltonian of the form H, Eq. (8), may be
derived. The (bare) coupling constants are

g=2 / V()[1 = cos(2kpx)]dx, (28)

Jd = / xV(x) sin(2kpx)dx. (29)

Usually, it is enough to retain g, and ¢’ is discarded due to
its irrelevance.

Imagine now that we adjust V to cancel g. [Strictly
speaking, we must eradicate the renormalized coupling
& =g+ O((¢)?); however, when V is small, the cor-
rections to the bare coupling are insignificant.] In a generic
situation ¢ remains finite even when g = 0. Of course, in
this case ¢ cannot be neglected, and Hj; [see Eq. (9)] is
realized. The aim of this discussion is to demonstrate that
upon destruction of the marginal interaction one does not
arrive at the free fermion theory. Rather, the new effective
theory has the irrelevant interaction term, and our system
becomes the quasi-Fermi liquid.

Conclusions.—To conclude, we have shown that the
system of 1D spinless fermions with irrelevant interaction
is neither a Fermi liquid, nor is it a Tomonaga-Luttinger
liquid. Instead, our system constitutes a distinct state of
matter, which we propose to call the quasi-Fermi liquid.
The generic Tomonaga-Luttinger Hamiltonian with non-
linear dispersion is known to be unitary equivalent to the
Hamiltonian of such a quasi-Fermi liquid. In addition, we
have speculated that the quasi-Fermi liquid may be realized
using cold atoms in a 1D trap.
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