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The low-energy spectrum of three particles interacting via nearly resonant two-body interactions in the
Efimov regime is set by the so-called three-body parameter. We show that the three-body parameter is
essentially determined by the zero-energy two-body correlation. As a result, we identify two classes of two-
body interactions for which the three-body parameter has a universal value in units of their effective range.
One class involves the universality of the three-body parameter recently found in ultracold atom systems.
The other is relevant to short-range interactions that can be found in nuclear physics and solid-state physics.
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The Efimov effect is a universal low-energy quantum
phenomenon, which was originally predicted in nuclear
physics [1] and has rekindled considerable interest since its
experimental confirmation with ultracold atoms [2–22]. It
is also expected to occur in solid-state physics [23,24]. This
universality stems from the effective three-body attraction
that occurs between particles interacting with nearly
resonant short-range interactions. As a result of this
attraction, three particles may bind even when the inter-
action is not strong enough to bind two particles.
Furthermore, an infinite series of such three-body bound
states exists near the unitary point where the interaction is
resonant, i.e., where a two-body bound state appears and
the s-wave scattering a length diverges. The typical three-
body energy spectrum for such systems is represented in
Fig. 1 in units of inverse length. Near zero energy and large
scattering lengths, the three-body spectrum is invariant
under a discrete scaling transformation by a universal factor
eπ=s0 ≈ 22.7 for identical bosons, where s0 ≈ 1.00624
characterizes the strength of the three-body attraction.
A notable consequence of the Efimov effect is the

existence of another physical scale beyond the two-body
scattering length to fix the low-energy properties of the
system. This scale is known as the three-body parameter. In
zero-range models, it manifests itself as the necessity to
introduce a momentum cutoff or a three-body boundary
condition. It can be characterized, for instance, by the
scattering length a− at which a trimer appears or by its
binding wave number κ at unitarity, as indicated in Fig. 1.
Because of the discrete scaling invariance, it is defined up
to a power of eπ=s0 . In this Letter, we will focus on the
ground Efimov state, which slightly deviates from the
discrete-scaling-invariant structure, but is more easily
observed and computed, and still reveals the essence of
the physics behind the three-body parameter.
Three important questions can be raised concerning the

three-body parameter. Is there a simple mechanism that
determines the three-body parameter from the microscopic
interactions? What is the microscopic length scale which

determines the three-body parameter? Finally, if there is
such a length scale, what are the conditions for the three-
body parameter to be related to that length scale through a
universal dimensionless constant, as suggested by exper-
imental observations [15,17] and recent calculations [25]?
This Letter answers these three questions for systems of
identical bosons (or three distinguishable fermions with
equal mass) where the resonant interaction can be described
by a single scattering channel. In ultracold atoms experi-
ments, the interaction is made resonant by using magnetic
Feshbach resonances [26]. The present results are thus
applicable to the case of broad Feshbach resonances, which
are dominated by their open channel, but not to narrow
Feshbach resonances, which are strongly affected by their
closed channel [27].
The question of the physical mechanism setting the

three-body parameter was addressed in Refs. [25,28] for
van der Waals interactions, which decay as 1=r6 at large
interparticle distance r. The numerical investigation of
Ref. [25] found that in the hyperspherical formalism, in
addition to the three-body Efimov attraction at large
distances, a three-body repulsion appears at short distances.
The distance at which this repulsion appears is comparable

FIG. 1 (color online). Schematic Efimov plot: three-body
energy E3 scaled as an inverse length as a function of the inverse
scattering length 1=a. The arrows indicate the scattering length
a− at which an Efimov trimer state appears, and its binding wave
number κ at unitarity (a → ∞), either of which serves as a
measure of the three-body parameter.
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to the size of the van der Waals tail of the potential, thus
preventing the system from probing the details of the
interaction at shorter distances. Therefore, the value of the
three-body parameter is set by the van der Waals length
associated with that tail. The authors of Ref. [25] remarked
that this three-body repulsion is not explained by quantum
reflection, as originally suggested in Ref. [29], but attrib-
uted it to an increase in kinetic energy due to the squeezing
of the hyperangular wave function into a smaller volume
caused by the suppression of two-body probability inside
the well or the repulsive core of the two-body potential.
This point was confirmed and clarified in Ref. [28] where
the kinetic energy was shown to originate from an abrupt
change of the geometry of the three-particle system caused
by the two-particle exclusion in the van der Waals region.
At large separation, the system has indeed an elongated
geometry due to its Efimov nature, but it must deform to an
equilateral configuration to accommodate for the mutual
exclusion between the particles. Reference [28] showed
that this deformation causes a nonadiabatic increase in
kinetic energy that manifests itself as a three-body repulsive
barrier. This phenomenon could be reproduced by simple
models involving only the knowledge of the pair correla-
tion causing the mutual exclusion between two particles at
short separations.
One may wonder whether these findings extend to other

physical systems. Indeed, the same deformation mecha-
nism is expected to occur in systems for which the two-
body interactions tend to suppress the two-body probability
at short distance. Thus, pair correlation should provide the
essential information that determines the three-body param-
eter and energy of the three-body system.
To investigate the role of pair correlation, we use a

simple model that reproduces the pair correlation and can
be solved exactly for three particles, and then compare it
with full exact calculations. We cannot use a zero-range
model because such a model would reproduce the asymp-
totically free part of the two-body wave function (i.e., the
on-shell T-matrix elements), but not its short-range corre-
lation (i.e., the off-shell T-matrix elements). We thus follow
the approach introduced in Ref. [28], where the interaction

is modeled by a separable potential [30] V̂ ¼ ξjχihχj,
which retains much of the mathematical simplicity of a
contact potential, while enabling us to reproduce any pair
correlation at zero energy. Indeed, for a given zero-energy
two-body s-wave radial wave function u0ðrÞ with the
asymptotic limit 1 − r=a, where a is the scattering length,
one can construct a separable potential reproducing this
wave function exactly by choosing the following form (in
momentum representation):

χðqÞ ¼ 1 − q
Z

∞

0

dr

�
1 −

r
a
− u0ðrÞ

�
sinðqrÞ; (1)

ξ ¼ 4π

�
1

a
−
2

π

Z
∞

0

dqjχðqÞj2
�

−1
: (2)

This simple prescription reproduces the low-energy two-
body physics, in particular the two-body bound state
around the unitary limit a → ∞. We construct separable
potentials that reproduce the pair correlation of the various
two-body potentials considered in Refs. [25] and [31]. The
three-body problem for a separable interaction can be cast
in the form of an integral equation in momentum space that
can easily be solved numerically [28,32,33]. The results are
shown in Table I where we indicate the values a− and κ for
the ground-state trimer. They agree with the exact calcu-
lations of Refs. [25] and [31] to within a few percents for
each of these potentials. This can be checked in Fig. 2
where the value of κ in our model is plotted against its exact
value. The method presented here therefore appears as a
simple and efficient way to estimate the three-body
parameter, and more generally low-energy properties for
various kinds of interaction potentials.
Now that we have established the connection between

the pair correlation and the three-body parameter, we are in
a position to ask which length scale in the pair correlation
determines the three-body parameter. For most physical
interactions, the major effect of pair correlations is to
suppress probability at short distance with respect to the
free wave. As discussed previously, this creates a three-
body repulsion through the nonadiabatic deformation

TABLE I. Three-body properties obtained for various potentials considered in Ref. [31], where g3 denotes the
factor required to multiply the potential so that the ground-state Efimov trimer appears at the three-body threshold,
a− denotes the scattering length for that factor, and E3 denotes the energy of the ground-state Efimov trimer at
unitarity (a → ∞). The symbols without a prime indicate that the values are taken from Ref. [31], and those with a
prime show our results based on the pair correlation using the separable model given by Eqs. (1) and (2). The same
units as in Ref. [31] are used.

Potential g3 g03 a− a0− E3 E0
3

Yukawa 1.35 1.38 −5.73 −6.55 −0.172 −0.134
Exponential 1.17 1.16 −10.7 −11.0 −0.047 −0.042
Gaussian 2.12 2.14 −4.27 −4.47 −0.236 −0.223
Morse (r0 ¼ 1) 0.294 0.295 −12.3 −12.6 −0.0325 −0.0299
Morse (r0 ¼ 2) 0.205 0.205 −16.4 −16.3 −0.0174 −0.0166
Pöschl-Teller (α ¼ 1) 0.797 0.802 −6.02 −6.23 −0.135 −0.123
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effect. Although the precise shape of the repulsive barrier
depends on the particular two-body potential, it should be
the length scale associated with the two-body suppression
that sets the location of the three-body repulsion, and
therefore the three-body parameter. This length scale is
given by half the effective range 1

2
re [34], which is the

average size of the deviation between the asymptotic and
fully correlated probability densities [35]:

1

2
re ¼

Z
∞

0

dr
��

1 −
r
a

�
2

− u0ðrÞ2
�
: (3)

Thus for common interactions which tend to suppress the
two-body probability within their range, re is positive and
the three-body parameter, expressed in the dimension of
length, is on the order of 1

2
re. Note that the effective range is

commonly featured as a term in the low-energy expansion
of the scattering phase shift (i.e., the on-shell T-matrix
elements). However, we expect that it is not possible to find
a connection between the three-body parameter and the
effective range from a method which introduces the
effective range in this manner, since this expansion con-
cerns only on-shell scattering and does not describe the
short-range correlation explicitly [36].
We can now address the final question of whether there

are classes of interactions for which the low-energy three-
body physics is universally determined. It is clear that if the
pair correlation is the same for a certain class of potentials,
they must lead to the same three-body parameter. This is
indeed the case for potentials with a power-law decaying

tail −Cnr−n, such as the van der Waals tail −C6r−6 relevant
to the interaction between ground-state atoms. It is well
known that the two-body wave functions in the tail of these
potentials are universally described in terms of the length
scale rn ¼ ð1=ðn − 2Þ ffiffiffiffiffiffiffiffiffiffi

mCn
p

=ℏÞ2=ðn−2Þ. If most of the
probability amplitude is located in the tail region, which
is the case if the short-range region is strongly repulsive or
attractive, all these potentials lead to a similar zero-energy
pair correlation that is known analytically:

u0ðrÞ ¼ Γ
�
n − 1

n − 2

� ffiffiffi
x

p
J1=ðn−2Þð2x−ðn−2Þ=2Þ

−
rn
a
Γ
�
n − 3

n − 2

� ffiffiffi
x

p
J−1=ðn−2Þð2x−ðn−2Þ=2Þ; (4)

where Γ and Jα denote the gamma and Bessel functions,
and x ¼ r=rn. The universality of the pair correlation is
illustrated in Fig. 3 for the 8 − 4 and Lennard-Jones
(12 − 6) potentials of various depths. This gives a simple
explanation of the observed universality of the three-body
parameter in atomic systems ranging from light helium
[22,37] to heavy atoms under broad magnetic Feshbach
resonances [15,17]. Figure 5 shows the binding wave
number κ of the ground-state trimer for these power-law
decaying potentials, evaluated using our separable potential
method. For potential depths supporting more than one
two-body bound state, the ground-state trimer is in fact a
resonance in the particle-dimer continuum, but it manifests
itself simply as a bound state in our model [38]. One can
see that the value of κ remains close to the one obtained
from the universal pair correlation. In the particular case
of a van der Waals tail, we obtain a− ¼ −10.86ð1Þr6 and
κ ¼ 0.187ð1Þr−16 in good agreement with Ref. [25] and
experimental observations [17,39]. Since the effective
range is related to the van der Waals length r6 through

FIG. 2 (color online). Bindingwavenumberκof theground-state
trimeratunitarity (seeFig.1)calculatedfromtheseparablemodel in
Eqs. (1) and (2) using the zero-energypairwave functionψ0, versus
its exact value, for various two-body potentials. The exact values
are taken fromRef. [25] for the Lennard-Jones potential (with only
one bound state) and from Ref. [31] for all the other potentials.
Thebindingwavenumber isexpressedinunitsof theeffectiverange
re of each potential, which is calculated exactly from Eq. (3). The
shaded area represents the region of 10% or less deviation from
the exact results.
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FIG. 3 (color online). Pair correlation at unitarity for potentials
decaying as power laws −1=rn. Top: the 8–4 potential. Bottom:
the Lennard-Jones potential. In each graph, the solid curves
correspond in order of opacity to potential depths supporting,
respectively 1, 2, and 3 s-wave bound states, which are obtained
by adjusting the value of σ. The dashed curve represents the
universal pair correlation in Eq. (4).
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re ¼ 4π
3Γð3=4Þ2 r6 ≈ 2.78947r6, these results correspond to

a− ¼ −7.78ð1Þ × ð1
2
reÞ and κ ¼ 0.261ð1Þ × ð1

2
reÞ−1.

There is a second class of potentials, which decay faster
than any power law, such as the Yukawa potential and other
typical nuclear potentials, as well as screened potentials
found in solid-state physics. At first glance, the two-body
wave functions for these potentials do not seem to exhibit
any particular universality. However, if the potential fea-
tures a deep attraction supporting many bound states, the
effective range near unitarity is large. This means that when
distances are expressed in units of 1

2
re, there is a sharp drop

of probability in the two-body wave function near r ¼ 1, as
represented in Fig. 4. It can be shown that this rescaled
two-body wave function converges to a step function in the
limit of strongly attractive potentials [40]. In this sense,
the three-body parameter is universally determined by the
effective range of these potentials, and stems from the
universal pair correlation limit:

u0ðrÞ ¼
�

0 for r < 1
2
re

1 − r
a for r ≥ 1

2
re.

(5)

Figure5 shows the trimer bindingwavenumberκ for some
of these potentials, namely, the Gaussian potential, the
Pöschl-Teller potential with α ¼ 1, the Yukawa potential,
theMorse potential with r0 ¼ 1 [31], as well as the neutron-
neutron interaction potential in the 1S0 channel [41]. While
noneof these calculations correspond to a particular physical
system, they capture the essence of the Efimov physics
occurring in the symmetric channel of nuclear systems, such
as the tritium nucleus. Each potential was scaled to reach
unitarity, corresponding to different possible depths of the
potential. One can see in Fig. 5 that as the depth of the
potentials is increased, κ converges to the value κ ¼
0.2190ð1Þ × ð1

2
reÞ−1 obtained for the two-body correlation

in Eq. (5). The convergence is, however, very slow, because
very deep potentials (supporting hundreds of bound states)
are required for the pair correlation to approach Eq. (5).
Finally, one should note that there is a notable exception to

these considerations. One might think that the square-well
potential, which often lends itself to simple analytical treat-
ments[42], isausefulmodelpotential toinvestigatethephysics
of the three-body parameter. However, it turns out to be a
specialcasewhichdoesnotbelongto the twoclassesdiscussed
above.Even though it decays faster thananypower law, it does
not belong to the second class because of its absence of tail. In
particular, the two-bodywavefunctionnearunitarityshowsno
progressive drop of probability in the well, only steady
oscillationswhich get faster as the depth of thewell increases,
andthereforedoesnotconvergeto thefunctioninEq.(5).From
thisweconcludethat thispotential isnotexpected to revealany
universality of the three-body parameter.
To summarize, we have pointed out how the Efimov three-

body parameter is deeply connected to the zero-energy two-
body correlation. This allows us to identify the two-body
effective range as the relevant length scale setting the three-
body parameter for the class of physical interactions which
suppress two-body probability at short distance. However, it
also shows that, unlike what was suggested in Ref. [25], this
suppression of two-body probability does not lead to a single
universal value of the three-body parameter in units of the
effective range. Indeed, we find two qualitatively distinct
subclassesof interactions forwhich thevalueof the three-body
parameter is universally determined. One corresponds to
short-range two-body potentials decaying as a power law,
relevant to atomic interactions, for which the three-body
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FIG. 4 (color online). Pair correlation at unitarity for potentials
decaying faster than any power law. Top: the Pöschl-Teller
potential;, bottom: the Gaussian potential. In each graph, the
solid curves correspond in order of opacity to potential depths
supporting respectively, 1, 2, 10, and 120 s-wave bound states.
The dashed lines show the universal pair correlation limit in
Eq. (5). The distance is scaled in units of 1

2
re in the main graphs,

while it is shown in unscaled units of r0 in the insets.
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FIG. 5 (color online). Bindingwavenumberκof theground-state
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universality stems from the two-body universality. The other
corresponds to very deep two-body potentials decaying faster
than any power law, which lead to an abrupt two-body
suppression. Typical interactions in nuclear physics decay
faster than any power law but support only a fewbound states,
so that their three-bodyparameter doesnot reach this universal
limit. In practice, however, one can expect the binding wave
number κ to be in the range 0.2 ∼ 0.4 × ð1

2
reÞ−1 for most

physical interactions, and inparticular close to0.35 × ð1
2
reÞ−1

for nuclear interactions supporting at most one bound state,
as can be seen in Figs. 2 and 5. These conclusions are
obtained for particles interacting through single-channel two-
body interactions, and would not apply in the presence of
significant three-body forces, or strongly energy-dependent
resonant interactions such as narrow Feshbach resonances
[27,43,44].
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