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In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms
that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can
themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and
magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can
occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such
conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this
mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that
thermal transport is strongly modified by these magnetic fields, which can impact longer time scale
temperature homogeneity and ion dynamics in the system.
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Understanding the Oð102Þ T magnetic fields that can
develop in high-power-laser interactions with solid-density
plasma [1–5] is important because such fields significantly
modify both the magnitude and direction of electron heat
fluxes [6]. The dynamics of such fields evidently have
consequences for inertial fusion energy applications [7–9],
as the coupling of the laser beams with the walls or pellet
and the development of temperature inhomogeneities are
critical to the uniformity of the implosion. There is a
significant interplay between heat fluxes and magnetic
fields: in semicollisional plasmas heat flux can be the
dominant mechanism for transporting magnetic fields in
addition to currents or bulk ion flow [10]. This effect,
arising due to an electric field analogous to the Nernst-
Ettingshausen effect in metals [11], has been shown to be
significant in laser heated plasma [12–14]. The Nernst
effect in plasma [10] arises as a consequence of the velocity
dependent collision frequency of electrons in plasma. Since
the faster, “hot,” population of electrons are essentially
collisionless, the magnetic field is “frozen” to them,
whereas the collisional, “cold,” portion of the distribution
function is able to diffuse across field lines. Hence,
magnetic fields can be advected with close to zero net
current by hot electrons.
In heating plasma with a finite laser spot, an azimuthal

magnetic field about the heated region arises through the
Biermann battery effect [1,15]. For multiple spots in close
proximity, as in inertial fusion, these magnetic fields will be
in a configuration with oppositely directed field lines.
Under such conditions, magnetic reconnection of field
lines may be expected to arise. Magnetic reconnection

has been intensely studied in space plasmas, but, more
recently, laser inertial fusion relevant scenarios have been
investigated [16–18].
In Sweet-Parker theory, a resistive region between

plasma inflows with resistivity η allows magnetic field
lines to diffuse and change topology, leading to jets
outflowing at Alfvènic speeds, vA [19,20]. However,
observed reconnection rates are rarely well described by
this model. In case of a small diffusion region L for which
the Sweet-Parker width, δSP ¼ L=

ffiffiffi
S

p
, where S ¼ vALμ0=η

is the Lunquist number, is smaller than the ion inertial
length, c=ωpi, Hall physics is relevant and reconnection is
no longer resistivity dominated. Rather, augmented by the
inclusion of Hall physics, reconnection rates have been
shown to be significantly faster, suggesting that the
dynamics at such small scale lengths contribute strongly
to reconnection. Recently, researchers have been interested
in the intermediate regime between collisionless and colli-
sional reconnection [21–24], where the Nernst effect can be
important. Given the analogous form of the Nernst term and
Hall current term in Ohm’s law, it is natural to propose that
the Nernst effect may enable reconnection in a similar
manner to Hall reconnection, but with the electron currents
replaced by heat fluxes.
In this Letter, we show that under conditions similar to

those found in hohlraums, where heat flux effects in Ohm’s
law are important [10], reconnection of field lines can
occur. The heat fluxes that are generated by the laser hot
spots drive reconnection through advection at the “Nernst”
velocity vT. The Nernst effect allows magnetic field
advection without an associated electron current, which
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is different than the standard Hall effect within the
reconnection layer; this breaks the Alfvenic constraint
(at least within the parameters considered) and allows
characteristic reconnection rates of Ez=ðB0vTÞ rather than
Ez=ðB0vAÞ. We show that this can occur for conditions
described by a dimensionless numberHN ≫ 1, which is the
ratio of Nernst to electron flow velocities. We find that this
mechanism is only relevant in a high β plasma, i.e., where
the ratio of thermal pressure to magnetic pressure is large.
However, the Hall parameter ωcτei can simultaneously
be large so that thermal transport is strongly modified
by magnetic fields, which can impact longer time scale
temperature homogeneity and ion dynamics.
The Vlasov-Fokker-Planck (VFP) equation, is solved

together with Ampere’s and Faraday’s laws to describe the
plasma. The code we use, IMPACTA [25,26], uses a
Cartesian tensor expansion [27], with the distribution
function expanded as fðt; r; vÞ ¼ f0 þ f1 · v̂ þ
f
2
∶v̂ v̂þ… This expansion can be truncated in a collisional

plasma, as collisions tend to smooth out angular variations
in the distribution function, resulting in a close to isotropic
distribution in the center of mass frame, represented by f0.
Higher orders are successively smaller perturbations,
f
2
≪ f1 ≪ f0, etc. Using the Lorentz gas approximations,

electron-ion collisions appear in the equation describing the
evolution of f1 in the ion center-of-momentum frame as an
effective collision frequency ∝ 1=v3:

∂f1
∂t þ v∇f0 −

eE
me

∂f0
∂v −

eB
me

× f1 þ
2

5
v∇ · f

2

−
2

5v3
∂
∂v

�
v3

eE
me

· f
2

�
¼ −

YniZ2

v3
f1; (1)

where Y ¼ 4πðe2=4πϵ0meÞ2 lnΛei. In IMPACTA, terms up to
and including f

2
are retained.

In reconnection studies, Ohm’s law is of crucial
significance. We can formulate a generalized form of
Ohm’s law for this velocity dependent collision operator
by multiplying by v3 and taking the current moment
ð4π=3Þ R∞

0 …v3dv.

E ¼ η̄jþ j ×B
ene

− vT ×B

−
∇ðnemehv5iÞ
6enehv3i

−
∇ · ðnemehvvv3iÞ

2enehv3i
; (2)

where the effective resistivity is

η̄ ¼ 2πZe2 lnΛei

ð4πϵ0Þ2mehv3i
;

the magnetic convection velocity by heat flow [10] is

vT ¼ hvv3i
2hv3i þ

j
ene

;

the inertial term (∂=∂t) is neglected, valid for a sufficiently
collisional system, a term contracting with E, hvvvi=
ð2hv3iÞ, is assumed to be small, and velocity moments
are defined by

hvni ¼ 4π

ne

Z
∞

0

f0vnþ2dv;

hvvni ¼ 4π

3ne

Z
∞

0

f1vnþ3dv;

hvvvni ¼ 8π

15ne

Z
∞

0

f
2
vnþ4dv:

The last two terms in Eq. (2) combined play the role of the
pressure tensor term normally used in Ohm’s law. To
express Eq. (2) in a more familiar form, if we assume that
the distribution function is a Maxwellian speed distribution
multiplied by a function of angle only, it can be shown that
Eq. (2) reduces to

E ¼ η̄jþ j ×B
ene

−
∇ · P

e

ene
− vT × B −

3

2

∇Te

e
þ…; (3)

where P
e
is the full electron pressure tensor and we have

neglected a ∼hvvi=hv2i correction to the ∇Te term. We
do not use Eq. (3) in this study, but instead compare the
results from the Vlasov-Fokker-Planck code with the more
general Eq. (2).
To gain some insight into the physical meaning of vT ,

Haines showed, using a model 1=v2 collision operator [10],
that the Nernst velocity could be related directly to the heat
flux by vT ≃ 2qe=ð5peÞ and how it relates to terms in
Braginskii’s equations [6].
To parametrize under what conditions the situation we

describe may occur, we can compare the relative magni-
tudes of the Hall term, j × B=ene, and the heat flow term,
vT × B in Ohm’s law to generate a new dimensionless
number:

HN ¼ enejvT j
jjj ¼ 1

5

κc⊥
ωcτei

�
1

~δc

�
2 ≡ 1

5
κc⊥βωcτei; (4)

where ωcτei is the Hall parameter, κc⊥ is the normalized
perpendicular thermal conductivity coefficient [28], and we
have used the heat flux component qe⊥ ∼ κ⊥∇Te to
estimate vT and assumed the gradient scale lengths for
the temperature and magnetic field are similar. The nor-
malized skin depth, ~δc ¼ c=ðvthωpeτeiÞ serves as an inde-
pendent parameter in Eq. (4). A small skin depth relative to
the mean free path means that electron currents are
inhibited, but the semicollisional behavior still allows for
electron energy transport. β is the ratio of thermal pressure
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to magnetic pressure. In the limit of large ωcτei, the κc⊥
approaches the asymptotic limit κc⊥ ¼ γ01=ðωcτeiÞ2, where
γ01 is a coefficient between 3.25 and 4.66 depending on Z
[28]. Hence, for large ωcτei, HN ¼ ðγ01=5Þβ=ωcτei and can
therefore only be significant for a high β plasma.
An important parameter in magnetic reconnection is the

Lundquist number S. We can also introduce an analogously
formulated Nernst-Lundquist number, SN ¼ vTLμ0=η,
which is defined according to the usual definition, but
replacing the Alfvèn velocity with the more relevant Nernst
velocity. The relationship between these two dimensionless
parameters is

SN ¼ HNωcτei ¼
κc⊥
5

�
1

~δc

�
2

: (5)

From these dimensionless numbers, we can see that for
an interesting heat-flux reconnection problem (i.e., for
ωcτei ≥ 1) dominated by Nernst effects (HN ≫ 1), the
Nernst-Lundquist number must also be large, SN ≫ 1.
This means that resistive effects will be small, and therefore
anisotropic pressurelike (f2) effects must be included in
Ohm’s law to support the electric field at the X point. In
Ref. [22], Daughton et al. included heat flux effects in their
reconnection study, but for their system HN ≲ 1, so the
thermal contribution was small. Here we examine a
situation where HN ≫ 1, where heat flux effects dominate.
As in Refs. [25,26], we use a normalization scheme with

time normalized to τn ¼ 4τei=3
ffiffiffi
π

p
and velocity normalized

to vth0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTe0=me

p
. As a result, lengths are normalized

to the electron mean free path λmfp ¼ vthτn. The compu-
tation is performed in a domain defined over the range
−100λmfp < y < 100λmfp and −1500λmfp < x < 1500λmfp.
The cells near the boundary in x̂ exponentially increase in
step size such that they can be considered “far away.” The
domain of interest in x̂, where the cell size is constant, is
−400λmfp < x < 400λmfp. The numerical resolutions in the
runs shown in the Letter are Δx ¼ 13.3333λmfp,
Δy ¼ 3.125λmfp, and Δv ¼ 0.0625vth.
The connection between the normalized quantities and

real parameters is made through the ratios vth=c and ωpeτn.
Here, vth=c ¼ 0.08 and ωpeτn ¼ 125 are chosen in order to
put the system into inertial confinement relevant condi-
tions, corresponding to a temperature Te0 ¼ 1.6 keV and
electron number density ne ¼ 2.5 × 1022 cm−3. This
results in a normalizing mean free path of 0.34 μm. A
magnetic field of B0 ¼ 1 corresponds to a field strength of
400 T (4 MG).
The magnetic field is generated through the ∇ne ×∇Te

mechanism. We introduce an out of plane plasma
density gradient of the form ∂nðx; yÞ=∂z ¼
ðn0=LnÞe−ðx=r0Þ2ðe−½ðyþymaxÞ=r0�2 þ e−½ðy−ymaxÞ=r0�2Þ, where
Ln ¼ 50 and r0 ¼ 50, by adding a z component of
the electric field. This gradient is switched off at
t ¼ 800τn to limit the magnetic flux. The temperature
profile is accomplished by heating the plasma near the y

boundaries of the system using an inverse bremsstrah-
lung heating operator [29] with a profile Hðx; yÞ ¼
H0e−ðx=r0Þ

2ðe−½ðyþymaxÞ=r0�2 þ e−½ðy−ymaxÞ=r0�2Þ, where H0 ¼
0.5, corresponding to a laser of intensity 2.5×
1014 Wcm−2. The strong heat flux from each hot spot
drives a radial expansion of the azimuthal magnetic fields.
The two magnetic ribbons expand into one another, driving
reconnection between the opposing magnetic fields. Ions

FIG. 1 (color online). At a time t ¼ 19000τn into the simulation
(a) B=mνei=e, (b) Te=Te0, (c) vT=vth0 in the x-y plane.
(d) B=mνei=e and (e) Te=Te0 at t ¼ 27000τn. Note that the axes
are not in proportion.
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are stationary in the simulation to isolate these effects,
which may be justified physically for the heavy ions
of the walls of a gold hohlraum [30]. Simulations run
with ion motion show similar behavior for these condi-
tions. However, as shown in Ref. [14], there is a scale
length dependence on the ratio vT=C, where C is the ion
velocity, so that for larger systems and longer time scales
hydromotion will become more important.
Figure 1 shows output from the simulation at a time

19000τn. Panel 1(a) shows the magnetization of the plasma,
B and 1(b) illustrates the temperature profile of the system.
The Nernst velocity 1(c) is approximately 102 larger in
magnitude than the maximum current (not shown). The
flow direction of the Nernst velocity (calculated directly
from the distribution function) indicates that thermal
energy is being brought inwards in the y direction towards
the reconnection region and is subsequently redirected
outwards in the x direction, carrying the magnetic field
with it. Distinct “jets” of heat flux are formed out of the
reconnection region.
Figure 1(d) shows the magnetic field profile after the

majority of the flux has reconnected, at a time 27000τn into
the simulation, which corresponds to approximately 0.6 ns.
The reconnected field lines are then advected by the Nernst
jets towards the x̂ boundaries.Figure 1(e) shows the
temperature profile at the same time as the magnetic field
in 1(d). The outward heat flow in x̂ from the reconnection
process causes the change in the temperature profile
from 1(b) to 1(e).
The quantity Ez is the rate at which magnetic flux crosses

the neutral point. In the case of oppositely directed
magnetic fields, Bx, the reconnecting magnetic field, By,
is generated through Faraday’s Law by the out of plane
electric field, ∂Ez=∂x in a 2D Cartesian geometry. We can
analyze the various contributions from the generalized
Ohm’s law, Eq. (2), by directly calculating the velocity
moments. Figure 2 shows the out-of-plane electric field, Ez,
and four of the terms that contribute to it. Anisotropic
pressure tensorlike terms almost entirely support Ez at the
X point, where the flows diverge, with a small contribution
from the resistive term. The vT ×B term provides an
analogue of the Hall current, with the actual Hall current
j ×B being negligible. The sum of just these moments of
the numerical distribution function agrees well with the
electric field taken from the code (which in these calcu-
lations includes electron inertia). Using the terms in Eq. (3)
instead, similar results are obtained, with the small differ-
ence being due to the non-Maxwellian distribution that
develops in the reconnection region.
By convention, as in [23], the reconnection rate coef-

ficient is reported as Ez=BvA, where vA is the Alfvèn
velocity and typical rates associated with fast reconnection
are Ez=BvA ¼ 0.1 − 0.2. In our simulation, the ions are
fixed and, consequently, Alfvènic flows are nonexistent.
The characteristic flow velocity for the flux is clearly vT.
There is a marked increase in the strength of the magnetic

field near the reconnection region. Fox, Bhattacharjee, and
Germaschewski [23] account for this effect in the calcu-
lation of the local magnetic field, and we perform the same
correction. We find that in our simulation, Ez=BvT ≈ 0.1, as
shown in Fig. 3(a).
Figure 3(b) illustrates the evolution of β, the ratio of

thermal pressure to magnetic pressure. The sharp peak
arises due to rapid heating of the plasma, and then the
subsequent decrease comes from the compression of the
magnetic field flux before the reconnection process can
begin. Once the anisotropic pressurelike term, Fig. 2(e)
supports the out-of-plane electric field, Ez, across the
reconnection layer, the field compression is maintained
and eventually reduced, while the plasma is heated due to
the decrease in transport inhibition because of the recon-
nection process. This corresponds to the steady increase in
β as observed after t ¼ 13000τn.Figfure 3(c) illustrates the
magnetization of the plasma over time. The initial rise in
ωcτei is due to the compression phase of the magnetic
field. After this period, a plateau arises because while
the magnetic field decompresses due to reconnection,
the plasma heats in the reconnection region, effectively

FIG. 2 (color online). Illustration of the contribution of the
different components of Ohm’s law in Eq. (2) taken from the
simulation at a time t ¼ 11000τn. (a) Ez calculated from the code,
(b) η̄jz, (c) ½j × B�z, (d) ½vT × B�z, (e) ½ð∇ · hvvv3iÞ=ð2hv3iÞ�z.
(f) Sum of all contributions (b)–(e).

FIG. 3 (color online). (a) The reconnection rate. (b) β - the ratio
of thermal pressure to magnetic pressure. (c) ωcτei as functions
of time.
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increasing τei. The steady decrease in the late-time behavior
is attributed to the magnetic field decompression as the
reconnected field lines relax from the Nernst outflows.
When simulations are performed with different values of

ωp=νei and vth=c, i.e., different plasma densities and
temperatures, the dynamics are similar for fixed ~δc. For
HN ≫ 1, the reconnection rate is close to Ez=BvT ≈ 0.1
independent of HN . The Haines number HN is the
important parameter that determines whether the recon-
nection is mediated by the Nernst effect. Another important
parameter is the Nernst number [14], which determines the
relative importance of hydrodynamics compared with the
Nernst advection. One significant difference compared to
Hall reconnection that we wish to highlight is that quasi-
neutrality can be maintained throughout the system and
therefore there is no necessity for ion motion outside of the
reconnection region to maintain dynamic equilibrium.
Redirected heat flows by magnetic reconnection can result
in a redistribution of thermal energy and reconnection of
field lines can remove thermal transport barriers. Since
strong heat flows and magnetic fields are expected in the
interior of hohlraums, understanding this mechanism can
be expected to be important for inertial fusion energy, in
particular, because reconnection may mitigate the thermal
transport inhibition by magnetic fields that could affect the
uniformity of the drive. However, this magnetic reconnec-
tion could also lead to the production of energetic electrons.
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