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Complicated wave behavior observed in the cylindrical pair-ion (fullerene) experiments by Oohara and
co-workers are now identified to be low harmonic ion cyclotron waves combined with ion plasma
oscillations inherent to kinetic theory. The electrostatic dispersion equation derived is based on an
approximation for the current from the exact solutions of the characteristic cylindrical geometry form of the
Vlasov plasma equation in a uniform magnetized plasma cylinder surrounded by a larger metal boundary
outside a vacuum gap, which thus differs from that in unbounded plasmas. Positive and negative ions,
differing only in the sign of their charge, respond to a potential in the same time scale and cooperate to
reflect the enhanced kinetic orbital behaviors to the macroscopic propagation characteristics. In addition,
the experimental value of the Larmor radius (comparable to the discharge radius but small enough to make
the analytic approximation useful) makes higher harmonic ion cyclotron effects both observable and
calculable with the appropriate approximation for the kinetic theory.
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After the pioneering experimental studies on propagation
properties of electrostatic waves in symmetric pair-ion
plasmas [1–5] (singly charged positive and negative ful-
lerene ions), there have appeared a number of theoretical
works on various linear and nonlinear modes in pair-ion
plasmas [6–17]. However, basic propagation characteristics
observed in the experiments have not been adequately
explained yet. This is because those works are based on
fluid theories of unbounded plasmas in spite of kinetic
natures seen in the experimental data. One sees several
separated solutions, each extending over a frequency range
mΩ to ðm� 2ÞΩ (with the exception of a low-frequency
branch going from 0 to Ω), all of which indicates the strong
effect of kinetic cyclotron resonances. The significance of
pair-ion plasmas is that it is produced in laboratories and
provides new insights into phenomena in pair plasmas in
general. This holds both in the laboratory environment (due
to clear advantages of being free from the usual problem of
annihilation inherent to antimatter electron-positron
plasma), and under astrophysical environments with similar
pair (electron-positron) plasmas where antimatter plasma is
frequently found. A main feature of pair-ion plasmas is that
positive and negative ions respond to a potential in the same
time scale and expose the kinetic orbital effects to the level
of the macroscopic properties like propagation character-
istics. In this Letter, we develop a kinetic theory in a
cylindrical coordinate system to treat whole eigenmodes in
a unified manner. Exact solutions of the characteristic
equations of the linearized Vlasov equation lead to an
approximate kinetic dispersion equation. The dispersion
relations of the low and high frequency backward waves

and some forward waves are terminated at certain wave
numbers kz due to the fact that the local solutions of
dispersion equation then become complex if kz is increased
and not due to the cyclotron damping. In a cylindrical
system, the cyclotron resonance damping is not effective
since particles are unlikely to come back to the same phase
of the wave after one cyclotron period. The essential feature
of the results presented here is that standard classic kinetic
theory is still enough to explain the puzzling experimental
results that remained elusive in spite of many attempts, yet
stressing that pair-ion plasma is a new kind.
For a plasma confined in a cylindrical vessel immersed in

a constant magnetic field B in the axial z direction, we
solve the Vlasov equation in cylindrical coordinates
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where Ωα ¼ eαB=mαc and α denotes the species as α ¼ �,
and the continuity and the Poisson equations
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The equilibrium is Fα0ðvÞ ¼ Fα0ðv⊥; vzÞ, v2⊥ ¼ v2r þ v2θ,
and we choose Fα0 to be Maxwellian. Now we introduce a
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fluctuation fα through Fαðr;v;tÞ¼Fα0ðv⊥;vzÞþfαðr;v;tÞ,
and linearize Eq. (1) to get
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where d=dt is the total derivative. Equation (3) is integrated
along the characteristic orbit in the phase space which is
defined by dr=dt ¼ vr, dθ=dt ¼ vθ=r, dz=dt ¼ vz,
dvz=dt ¼ 0, dvr=dt ¼ v2θ=rþ Ωαvθ, and dvθ=dt¼−vθvr=
r−Ωαvr. Since we have three invariants, E ¼ v2rþ
v2θ ¼ v2⊥, L ¼ vθrþ ðΩα=2Þr2, and vz, we may introduce
a variable φðtÞ through vr ¼ v⊥ cosφ and vθ ¼ v⊥ sinφ.
Equations for φðtÞ and θðtÞ then reduce to dφ=dt ¼
−ðv⊥=rÞ sinφ −Ωα, dθ=dt ¼ −dφ=dt −Ωα, where rðtÞ ¼
rL½−ε sinφðtÞ þ ðsin2φðtÞ þ 2κÞ1=2� is derived from the
invariant Lðκ ¼ LΩα=v2⊥Þ and rL is the Larmor radius
defined by rL ¼ v⊥=jΩαj and ε ¼ jΩαj=Ωα. Since rðtÞ is
non-negative, κ ≥ 0. The φðtÞ and θðtÞ are

φðtÞ ¼ ~φ0 − Ωαt − εsin−1½cosφðtÞ=sðκÞ�

¼ ΦðtÞ − sin−1
cosΦðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½1þ κ þ εsðκÞ sinΦðtÞ�p ; (4)

θðtÞ ¼ ~θ0 þ εsin−1½cosφðtÞ=sðκÞ�; (5)

where ΦðtÞ ¼ ~φ0 −Ωαt, sðκÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2κ

p
, φ0 ¼ φð0Þ,

~φ0 ¼ φ0 þ sin−1½cosðφ0=sðκÞÞ�, θ0 ¼ θð0Þ, and ~θ0 ¼ θ0−
ð ~φ0 − φ0Þ. The zðtÞ and rðtÞ are integrated as
zðtÞ ¼ vztþ z0,

rðtÞ ¼ rL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where ψðtÞ ¼ cos−1½qðκÞ cos ðΦðtÞ=2þ επ=4Þ�, pðκÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1þ κ þ sðκÞ�p

, qðκÞ ¼ 2sðκÞ=pðκÞ, r0 ¼ rð0Þ, ~r0 ¼
r0 − rL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ þ εsðκÞ sin ~φ0

p
and z0 ¼ zð0Þ.

Since the exact solutions in Eqs. (5) and (6) are
unfortunately not directly applicable to integrating
Eq. (3) along the orbit (as was the case for Cartesian
geometry) we now use the following approximation.
Noting sðκÞ ≥ 1 and j cosφ=sðkÞj ≤ 1, θðtÞ is approxi-
mated as θðtÞ≃ ~θ0 þ εSðκÞ cosΦðtÞ, where SðκÞ ¼
sin−1½1=sðκÞ�. In a similar way using the conditions
qðκÞ ≤ 1 and jqðκÞ cosψðtÞj ≤ 1 in Eq. (6), we may
approximate ψðtÞ as ψðtÞ≃ π=2þQðκÞ cos½ΦðtÞ=2þ
επ=4�, where QðκÞ ¼ sin−1qðκÞ, leading to

rðtÞ ¼ rLpðκÞ sinψðtÞ≃ rLpðκÞ cosfQðκÞ cos½ΦðtÞ=2
þ επ=4�g

¼ rLpðκÞfJ0½QðκÞ� þ 2
X
n≥1

J2n½QðκÞ� cos½nðΦðtÞ

þ επ=2Þ�g. (7)

Here, Jl is the Bessel function of the first kind and positive
definite sinceQðκÞ is smaller than the first zero of J0. In the
following we retain only J0 and J2 since J2n with n > 2 is
negligible compared with J0 and J2.
Now (r0, θ0) at t0 are represented by (r, θ) at t as r0 ¼ rþ

2rLpðκÞJ2ðQðκÞÞ½sinðΩατ þ φÞ − sinφ�, θ0 ¼ θ þ ξðτÞ,
where τ¼ t0− t, ξðτÞ¼−Ωατ=2þ tan−1½gðτÞ�− tan−1½gð0Þ�,
and gðτÞ ¼ ½ð1þ κÞ tanðΩατ=2þ θÞ þ sðκÞ�=κ. The usual
convenient assumption in kinetic theory of uniform density
nα0 is also made here so that the calculation of the plasma
current can go forward; in the end the justification for
this is whether the result is in acceptable agreement with
experiment. Introducing the Fourier-Hankel transform
ϕðr;θ;z;tÞ¼Pk

P
lϕlðk⊥;kz;ωÞJlðk⊥rÞexp½ilðθþπ=2Þþ

iðkzz−ωtÞ� where k⊥ ¼ ðk⊥ cos ρ; k⊥ sin ρÞ, Eq. (3) is
expressed as
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where β ¼ k⊥rLpðκÞJ2ðQðκÞÞ≃ k⊥rL=2. In the following
we only consider the case of l ¼ 0 since the oscillation
potential observed in the experiment is maximum at
the center. Then ξðτÞ no longer has a contribution in
the integration over the time and it may be neglected
in Eq. (8). Next, the current estimated through

jlðr; kz;ωÞ ¼
P

αeα
R
vfαlðr; kz; v;ωÞdv is substituted

into Eq. (2) to give the electric displacement as
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! Er
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!
; (9)
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where for the Maxwellian Fα0,

K⊥¼1þ
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dmðηÞ ¼ ImðηÞe−η, η ¼ k2⊥r2L=4, WðζÞ is the plasma
dispersion function defined by WðζÞ ¼ ð1= ffiffiffiffiffiffi

2π
p Þ RC½1=ðx − ζÞ� expð−x2=2Þdx, ζ2m ¼ ðω − 2mΩαÞ=ðkzvTαÞ, and

we have used
R
∞
0 uJnðαuÞJnðβuÞe−u2du ¼ ð1=2ÞInðαβ=

2Þe−ðα2þβ2Þ=4,
P

nJnðηÞ2 ¼ 1,
P

nInðηÞe−η ¼ 1. Now
Eq. (2) (i.e., the Poisson equation) reads
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l2

r2
Jlðk⊥rÞ

�
−k2zKzJlðk⊥rÞ¼0;

where k⊥ is determined by

k2⊥K⊥ þ k2zKz ¼ 0: (10)

The dispersion relation is determined by the boundary
condition. Since the plasma is detached from the wall, the
boundary conditions are that the normal displacement and
tangential electric fields are continuous at the plasma
boundary, yielding

K⊥k⊥
J0lðk⊥r�Þ
Jlðk⊥r�Þ

−
l
r�
K⊥2 ¼ kz

ϕ0
out ðkzr�Þ

ϕoutðkzr�Þ
; (11)

for which we put l ¼ 0. Outside the plasma the potential is
a solution of the Laplace equation ∇2ϕout ¼ 0 with the
condition ϕoutðRÞ ¼ 0 at the wall r ¼ R, that is
ϕoutðkzrÞ ¼ A½K0ðkzRÞI0ðkzrÞ − I0ðkzRÞK0ðkzrÞ�, where
K0 and I0 are the modified Bessel functions. Thus, the
waves are determined by solving Eqs. (10) and (11) for
which the plasma is assumed to be Ωþ ¼ Ω− ¼ Ω,
vTþ ¼ vT− ¼ vT , ω2þ ¼ ω2

− ¼ ω2
p, and the ion Debye

lengths λ2þ ¼ λ2− ¼ λ2 ¼ v2T=ω
2
p.

The parameters used here are the same as those in the
experiment, the density n0 ¼ 1 × 108 cm−3 of the fullerene
plasma with mi ¼ 720mp (ωp=2π ¼ 78.2 kHz), the mag-
netic field B ¼ 0.2 T (Ω=2π ¼ 4.2 kHz), the temperature
Tþ ¼ T− ¼ 0.3 eV (in the experiment Tþ ∼ T−∼
0.3–0.5 eV), the plasma radius r� ¼ 1.5 cm, and the vessel
radius R ¼ 4 cm, respectively. Thus, λ ¼ 0.04 cm,
rL ¼ 0.75 cm, and vT ¼ 200 m=s.
Dispersion equations.—For the plasma satisfying the

inequality ωp > Ω > kzvT, we may rely on the asymptotic

expansion of the plasma dispersion function in Eqs. (10)
and (11), and we obtain

1 ¼ 2

k2λ2
X∞

m¼−∞
dmfC0ðm; xÞ þ C1ðm; xÞg; (12)

1 −Gðk⊥; kzÞ ¼
2

k2⊥λ2
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m¼−∞
dmC1ðm; xÞ; (13)

where k2¼k2⊥þk2z , x ¼ ω=Ω, C1ðm; xÞ ¼ 2mð2mþ 1Þ=
½x2 − ð2mþ 1Þ2� þ 6mð2mþ 1Þk2zr2L=½x2 − ð2mþ 1Þ2�2,
C0ðm;xÞ¼k2zr2L=½x2−ð2mÞ2�þ2ð2mÞ2k2zr2L=½x2−ð2mÞ2�2,
and Gðk⊥;kzÞ ¼ ðkz = k⊥Þðϕ0

outðkzr�Þ=ϕoutðkzr�ÞÞ×
ðJ0ðk⊥r�Þ=J00ðk⊥r�ÞÞ. Equations (12) and (13) give an
alternative dispersion equation

1

2
½k2z þ k2⊥Gðk⊥; kzÞ�λ2 ¼

X∞
m¼−∞

dmC0ðm; xÞ: (14)

In the following we solve Eqs. (13) or (14) to get ω ¼
ωðk⊥; kzÞ and substitute the result into Eq. (12) to get the
relation between kz and k⊥ numerically. The coefficient
dmðηÞ is rapidly decreasing with m and increasing with η,
the higher order resonances become effective for larger
η. The reason we retain up to the second order expansion of
the plasma dispersion function is because it plays a definite
role in the vicinity of the resonance. In the experiment the
Larmor radius is comparable to the half of the vessel radius,
implying the waves of higher m are excitable.
The novel cylindrical analysis developed here, especially

in its various approximations, proves to agree remarkably
well with the experimental results. This can be more clearly
seen when one develops these approximations in detail, the
topic to which we now turn.
Wave solutions under various approximations.—In the

experiment, two branches of backward waves exist in the
low and intermediate frequency ranges although the low-
frequency backward wave is clearly observed only when
waves are excited by a grid exciter.
Low-frequency waves ω < Ω: Eq. (16): Since the back-

ward wave in 0 < ω < Ω is supposed to be a coupled mode
of the thermal and ion cyclotron modes, we eliminate k2⊥
from Eqs. (12) and (13) and retain terms with resonances in
this frequency range to obtain

d0
k2zr2L
x2

− Ĝd1

�
2

x2 − 1
þ 6k2zr2L
ðx2 − 1Þ2

�
−
k2zλ2

2
¼ 0; (15)

where Ĝ ¼ G=ð1 − GÞ. As is expected when the parallel
wave number is small, so the k2zλ2 term in Eq. (15) can be
dropped, yielding

ω2 ¼ ðb1Ω2=b2Þf1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d0k2zr2Lb2=b

2
1

q
g; (16)
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where b1 ¼ d0k2zr2L − Ĝd1ð1 − 3k2zr2LÞ and b2 ¼ d0k2zr2L−
2Ĝd1. This is substituted into Eq. (12) to fix the relation
between k⊥ and kz. The solution, Eq. (16), is depicted by
the purple curves in Fig. 1: the solutions withþ and − signs
are backward and forward, respectively. In Fig. 1 the
dots are experimental data given in Fig. 6 of [4]: the blue
dots are for the waves excited by a cylindrical exciter and
the red ones are by a grid exciter. Since the difference is
observed only for the low-frequency waves, the experi-
mental data by the grid exciter are plotted only for the low-
frequency backward and forward waves. The solution,
Eq. (16), fits the data by the cylindrical exciter for the
parameters mentioned above. The dispersion curves are
terminated at kz=2π ∼ 0.05 where the solution, Eq. (16),
becomes complex. The k⊥ is almost constant around
k⊥r� ∼ 1.035 and less than the first zero of the eigenfunc-
tion J0ðk⊥rÞ. The data by the grid exciter are reproduced by
the same solution, Eq. (16), but now with T ¼ 0.1 eV and
k⊥r� ∼ 2.653 which is between the first and the second
zeros of the eigenfunction. For both cases Gðk⊥; kzÞ > 0,
implying the low-frequency backward and forward waves
do not induce surface charges.
Intermediate frequency backward wave 2Ω < ω < 4Ω:

Eq. (18): These waves are regarded to be from single
dispersion curve. However, based on our dispersion equa-
tions [(13) and (14)], the experimental data are supposed
to consist of two branches, one from Eq. (14) and the
other from Eq. (13). First we consider Eq. (14), which is
written as

1

2
½k2z þ k2⊥G�λ2 ¼

X
m≠�2

dmC0ðm; xÞ þ 64d2k2zr2L
ðx2 − 16Þ2 : (17)

The solution of Eq. (17) is approximated by

ω2

Ω2
¼ 16 −

�
64d2k2zr2L

ðk2z þ k2⊥GÞλ2=2 − b3

�
1=2

; (18)

where b3 ¼
P

m≠�2dmC0ðm; 4Þ. Equation (18) is substi-
tuted into Eq. (12) to get the sets of k⊥ and kz. The solution,
Eq. (18), is depicted in Fig. 1 by a brown curve. In the
experiment, the long wave part of the dispersion relation is
not observed, while Eq. (18), unlike Eq. (16), does not
provide an upper limit on kz (usually a “nose” in an ω vs kz
plot), beyond which the frequency values are complex. It
might be due to the rough approximation used above. The
k⊥r� value is around 3.863 between the first and second
zeros of the eigenfunction and Gðk⊥; kzÞ > 0.
Intermediate frequency 3Ω < ω < 5Ω: Eq. (20): In the

frequency range 3Ω < ω < 5Ω, Eq. (13) reads

ð1 −GÞ k
2⊥λ2
2

¼
X

m≠−3;2
dmC1ðm; xÞ þ 60d2k2zr2L

ðx2 − 25Þ2 ; (19)

and the solution is approximately given by

ω2

Ω2
¼ 25�

�
60d2k2zr2L

ð1 − GÞk2⊥λ2=2 − b4

�
1=2

; (20)

where b4 ¼
P

m≠−3;2dmC1ðm; 5Þ. The solution, Eq. (20),
with the − sign, is depicted in Fig. 1 by a green curve. The
dispersion relation of this wave is terminated at the wave
number at kz=2π ¼ 0.08 for the backward wave beyond
whichGðk⊥; kzÞ ≥ 1 so that 1 −G becomes negative and ω
becomes complex. The k⊥r� value is around 1.452 for
which b4 is neglected; that is, the effects of the remote
resonances are neglected. For large k⊥, b4 is not neglected
and the similar solution is obtained when k⊥r� ∼ 7.275 for
which the eigenfunction has two nodes. This is because
Gðk⊥; kzÞ has to be negative and the real solution of
Eq. (20) exists only for large values of k⊥r�.
A fragment of the forward wave dispersion relation

around ω=2π ∼ 5Ω is given by the solution Eq. (20) with
the þ sign and is shown in green in Fig 1. The branch is
terminated at kz=2π ¼ 0.04 and k⊥r� ∼ 1.313.
Ion cyclotron wave: The frequency range is

Ω < ω < 3Ω, for which we solve Eq. (13):

ð1 −GÞ k
2⊥λ2
2

¼
X
m≠0;1

dmC1ðm; xÞ þ 6d1k2zr2L
ðx2 − 1Þ2 ; (21)

where the term 2d1=ðx2 − 1Þ is neglected since this term is
dominated over by the second term of the right-hand side.
The solution is given by

FIG. 1. (color) The dispersion relations of the axially propa-
gating waves of l ¼ 0. The details are in the text. The enlarged
figure of the dispersion relations of the low-frequency backward
or forward waves is embedded. The labels on the theory curves
give the equation number and the horizontal dotted lines
indicate the cyclotron resonance frequencies ω=2π ¼ mΩ=2π,
m ¼ 1; 2;….
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ω2

Ω2
¼ 1þ

�
6d1k2zr2L

ð1 −GÞk2⊥λ2=2 − b5

�
1=2

; (22)

where b5 ¼
P

m≠0;1dmC1ðm; 1Þ. The solution is depicted in
Fig. 1 by an orange curve. The k⊥r� is 0.39 and
Gðk⊥; kzÞ > 0.
High frequency wave: In the high frequency range

ω ≫ Ω, Eq. (13) gives Gðk⊥; kzÞ ¼ 1 which determines
the relation between k⊥ and kz. Then we solve Eq. (14) in
which we keep only the term of m ¼ 0 to give

ω2 ¼ 2d0
k2z

k2⊥ þ k2z
ω2
p: (23)

This is the ion plasma wave in a cylindrical system and
depicted in Fig. 1 by a black curve. Certainly k⊥r� is less
than the first zero of the eigenfunction. Note that in Ref. [4]
the density estimated from the dispersion relation ω ¼ffiffiffi
2

p
ωp is 3.3 × 106 although the value measured by the

probe is 1 × 108. This discrepancy is resolved by using our
derived expression which fits the experimental data
with n ¼ 1 × 108.
High frequency cyclotron waves: In the frequency range

ω > 5Ω, Eq. (13) does not give real solutions for the ion
cyclotron harmonic waves. However, in the experiment
there is a tiny fragment of the dispersion curve of the
backward wave at ω ∼ 7Ω. Appropriate approximations to
display these features have yet to be found.
Summary.—We have analyzed the propagation charac-

teristics of electrostatic waves in a homogeneous pair-ion
plasma in a cylindrical system and shown based on a kinetic
theory that the observed waves are identified to be ion
cyclotron harmonic waves in the intermediate frequency
range and a coupled wave of ion cyclotron mode and ion
thermal mode in the low-frequency range. The noticeable
Larmor radius is crucial for higher harmonic cyclotron
resonances to play definite roles in the dispersion equations
and makes the first few harmonic ion cyclotron waves
observable. Thus, in order to explain experiments, a kinetic
theory is needed together with cyclotron and cylindrical
effects. However, the story may still be one sided and
incomplete, because the same may hold for trapping which

cannot be ruled out [18,19], and a complete picture can
only be delivered by treating all these aspects
simultaneously.
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