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Localized structures have been observed in many spatially extended systems of either biological,
chemical, or physical nature. Here, we study experimentally front pinning and dissipative localized
structures in a delayed optical system based on a bistable semiconductor laser with optoelectronic
feedback. We observe that many of the concepts known to apply to spatially localized structures also apply
in this context, with specificities related to the lack of reversibility symmetry. Numerical simulations based
on purely prototypical modeling reproduce very well the experimental findings, which indicates that the
results do not depend on the specific physical system under consideration, but are, on the contrary, very
generic features of time delayed systems.
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Nonlinear systems driven far from equilibrium often
admit multiple coexisting stable attractors, and fronts
connecting these states are fundamental in the formation
of spatial structures. Therefore, a considerable amount of
research has been devoted to the dynamics of fronts and
how their interaction can lead to the stability of spatial
localized structures. In large classes of systems, this
stability relies on front “pinning”: even when two states
have a different free energy, a front connecting them
may be stationary provided one of the states is spatially
modulated [1]. The presence of the spatial modulation,
then, leads to an unfolding of the Maxwell point [2] into a
“pinning region,”which is of fundamental importance since
it contains the series of homoclinic bifurcations leading to
the formation of families of localized states in spatially
extended systems [3,4]. Localized states have been
explained on the basis of this homoclinic snaking in many
fields of science (see, e.g., [5,6]), in particular, in nonlinear
optics (see, e.g., [7], several contributions in [8], and the
review [9]). In the optical context, front pinning and
unpinning have been recently studied close to a modula-
tional instability in [10] and in a spatially forced optical
system [11,12]. In the case of spatial forcing, the homo-
clinic snaking structure and localized states have been
analyzed in [13,14].
Here, the analogue of pinning phenomena and spatially

localized structures are demonstrated in a system with no
spatial degrees of freedom.
A correspondence between delayed dynamical systems

and one-dimensional spatially extended systems is
expected in the long-delay limit, i.e., when the delay time
τ is much higher than the typical time scale of the isolated
system [15,16]. In this case, the space-time representation
is obtained by mapping a delay-time segment onto a

pseudospatial cell and the index numbers of the subsequent
delay cells, n, into a pseudotime variable.
While the formal equivalence has been rigorously

demonstrated for systems undergoing a supercritical
Hopf bifurcation [17,18], a proof in the case of subcritical
bifurcations (i.e., to finite-amplitude solutions) is still
lacking. Theoretical studies [19–24] and recent experi-
ments [25,26] suggest that the representation could also be
effective in these cases. In particular, finite amplitude
solutions in long-delayed bistable systems translate into
propagating fronts in the appropriate spatiotemporal frame-
work [25]. However, whether the spatiotemporal analogy
can be extended much further than the mere existence of
propagating fronts is yet to be demonstrated.
In this Letter, we provide the experimental evidence of

localized structures in a long-delayed bistable system. We
show that a small-amplitude temporal modulation acts as a
pseudospatial forcing, giving rise to front pinning phenom-
ena and, thus, suggesting the analogy with a 1D spatially
forced bistable medium. Moreover, due to the lack of
reversibility symmetry in pseudospace, the unpinning
transition occurs via two separated saddle-node bifurca-
tions. The splitting of such a transition has, thus far, never
been reported, even in the framework of spatially extended
systems. Within the pinning range, we demonstrate the
existence and stability of the analogue of single- and
multicell spatially localized states. Such structures can
be independently generated and erased by means of
suitable external perturbations, thus, enabling their use
as optical information bits. The results are well reproduced
in the framework of a simple general model.
The experiment (top panel of Fig. 1) is based on a single

transverse, vertical-cavity surface-emitting laser (VCSEL)
in a regime of bistable emission for the two orthogonal,
linear polarizations of the light intensity.
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The polarization components of the output beam are
selected and split by means of a half-wave plate and a
polarizing beam splitter. One polarization is sent to a high
sensitivity detector whose output is monitored by a digital
oscilloscope. The signal from the orthogonally polarized
beam is sampled, sequentially shifted by means of a
reconfigurable acquisition board, and then fed back into
the laser through the pump current. In this way, a suitable
control of the delay transfer function can be achieved,
including the setting of initial conditions, the delay time τ
(fixed here at 19 ms, much longer than any time scale of
the system) and the coupling factor G (amplification of
the feedback signal current). The laser, housed in a
temperature-stabilized box, is biased by a voltage signal
VðtÞ ¼ V0 to which a periodic modulation Vm sinð2πt=TmÞ
provided by a function generator can be superimposed. The
amplitude of the modulation is always kept much smaller
than the width of the bistability region. The operation point
within the bistable region can be controlled either through
the dc pump V0 or through the coupling G, as shown in
[25]. Here, we fix V0 ¼ −454 mV and we use G as the
main control parameter. Pulse perturbations to the feedback
loop can be applied by injecting light from a diode laser
driven by a pulsed current. The space-time representation is
obtained by decomposing the time series into pseudospatial
cells of length τ þ ε. Each time value within the time trace
is identified by a real number σ (0 ≤ σ < τ þ ε), indicating
the “position” inside a given delay segment and, thus,
acting as a pseudospatial variable, and by the segment
number n, which plays the role of the pseudotime coor-
dinate. The parameter ε ≪ τ has been chosen so that the
temporal modulation Vm sinð2πt=TmÞ translates into a
stationary periodic pattern along the σ axis.
In the absence of periodic forcing (Vm ¼ 0) and for the

chosen value of V0, the system exhibits bistability between
a low-intensity and a high-intensity state. When the system
is prepared in a inhomogeneous state, in which the whole
feedback loop is filled with the low power state with the
exception of a small segment in the high-power state, the

system displays coarsening; i.e., fronts start to propagate
such that a single phase (the dominant) progressively
invades the whole system [25]. An example is shown in
the right panel of Fig. 1, where left and right fronts
connecting the low to high power states (and back) drift
apart, leading to a growth of the high intensity domain. At
time n ¼ 378, the (pseudo)spatial modulation is applied.
Starting from that instant, the motion of the fronts is altered
by the modulation and, after a short transient, is blocked.
Notice that the coarsening pattern in Fig. 1 is slightly
asymmetric. This is due to the fact that, at each subsequent
delay interval, the average position of a phase domain shifts
to the right by a quantity δ, which depends on the system
parameters [25]. This is a general property of long-delayed
systems [17,18,27]. A symmetric coarsening pattern
together with a stationary pseudospatial modulation could,
thus, be obtained by choosing ε ¼ δ in the space-time
representation and by setting Tm as an integer submultiple
of (τ þ δ).
At this point, we have a basic demonstration of the

freezing of coarsening caused by the pinning of fronts via a
pseudospatial modulation. In systems with spatial forcing,
the transition from the pinning to the propagation regime
occurs via a saddle node (on a circle-) bifurcation for the
velocity of the fronts [28]. This translates into an average
growth rate of the area occupied by the most stable state,
which scales as the square root of the distance to the
unpinning point [12].
In order to study this transition, we perform systematic

measurements for different values of the parameter G
which controls the asymmetry of states. For each value
of G, the system is prepared in an initial condition
consisting of the whole space in the low power state with
the exception of a segment in the high power state. The
results are shown in Fig. 2.
For small values of the asymmetry parameter, the fronts

do not propagate at all and, accordingly, the growth rate is
zero. We remind that, in absence of forcing (as in spatially

FIG. 2 (color online). Growth rate of the dominant phase
against the coupling parameter G. Solid line: square-root fit in
the range 1 ≤ G ≤ 1.3. Insets: Space-time representation of the
laser intensity for G ¼ 1.2 [(a)] and G ¼ 1.47 [(b)]. Other
parameters as in Fig. 1.

FIG. 1 (color online). Left panel: experimental apparatus.
H: half-wave plates; PD: photodiodes; PBS: polarizing beam
splitters; AD-DA: analog-to-digital, digital-to-analog converter.
Right panel: space-time representation of the laser intensity signal,
fromlight(lower levelstate) todark(higher levelstate).Adarkregion
of 0.05 space units (1 ms) is seeded at time n ¼ 100. At n ¼ 387,
the modulation is switched on. Parameters: τ ¼ 19 ms, G ¼ 1,
V0 ¼ −454 mV, Vm ¼ 1 mV, Tm ¼ 1.904 ms, ε ¼ 0.002τ.
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extended bistable systems), this happens only at the
Maxwell point as shown in Ref. [25]. The observation
of a zero growth rate in a finite region, therefore, corre-
sponds to the unfolding of the Maxwell point. Above
G ¼ 1.1, the growth rate suddenly increases with a square-
root scaling, indicating that the unpinning transition has
occurred. However, only the left front is propagating,
whereas the right front is still pinned [see inset (a) in
Fig. 2]. The situation remains qualitatively unaltered until
G ¼ 1.32, where a second bifurcation takes place, as is
clearly illustrated by the abrupt change in the growth rate.
This corresponds to the unpinning of the right front [inset
(b)]. The other front now also drifts away (as shown on the
bottom right inset in Fig. 2), such that the high power state
invades the whole system. Although a detailed study of this
splitting and of each of the transitions is left for future
work, the scaling of the growth rate and the oscillating front
velocity visible at the edges of the domain suggest that the
two subsequent bifurcations are saddle-node ones.
Within the pinning region, one expects to observe

localized states, consisting of pairs of stationary fronts
connecting back and forth the lower and upper states. In
order to generate such structures, the system is prepared in
the low power state, with G within the pinning region. At
time n ¼ 100, an additional laser pulse is applied to the
feedback loop, locally switching the system to the higher
state. Since the pulse is much shorter than a round-trip time,
it plays the role of a local perturbation in the pseudospace.
The results are shown in Fig. 3 where, after a transient,
a localized structure is generated and remains unaltered
until the experiment is switched off. Since, by definition,
localized states are expected to have only short range
interactions, several of them can exist independently of
each other provided they are separated enough in space.
This is shown in the left panel’s inset of Fig. 3, in which

several localized states have been nucleated and annihilated
by short optical perturbations [29]. Although the existence
of a homoclinic snaking phenomenon for localized struc-
tures analogues in delayed dynamical systems remains to
be established, we have observed the coexistence of not
only single-hump, but also multihump localized states. In
the right panel of Fig. 3, the parameters are set within the
pinning region, and we set as initial conditions three islands
(of differing widths) of high power state on a lower state
background. During the following transient, each of the
seeded areas evolves towards a different state, correspond-
ing to three-, four-, and single-hump localized states. This
result demonstrates that such structures can coexist in the
system, in direct analogy to what was observed in spatially
modulated bistable systems [14].
The polarization dynamics of vertical-cavity surface-

emitting lasers can be described by means of a one-
dimensional bistable potential [30,31]. Here, for the sake
of simplicity and generality, we adopt a completely
prototypical model of a bistable system with delayed
feedback [25].

_x ¼ −U0ðxÞ þ gxðt − τÞ; (1)

where the scalar variable xðtÞ represents the laser intensity,
g > 0 is the feedback gain [32], and U0ðxÞ ¼
xðxþ 1þ aÞðx − 1Þ. Alongwith the trivial unstable solution
x0 ¼ 0, Eq. (1) possesses two stable fixed points
x� ¼ ½−a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þ aÞ2 þ 4g
p

�=2. The parameter a controls
the degree of stability of the two stable states or, equivalently,
the asymmetry of the double-well potential, UðxÞ.
As in the experiment, we apply a small temporal

modulation to the asymmetry parameter a, i.e., a ¼ a0 þ
am sinð2πt=TÞ and we integrate numerically Eq. (1). We
choose the modulation period close to an integer submul-
tiple of (τ þ δ), and we use ε ¼ δ in the space-time
representation. In this case, the pattern is stationary in
the pseudotime.
In absence of modulation, the growth rate of the

dominant phase (dashed line in Fig. 4) increases with
ja0j and is zero only at the Maxwell point, a0 ¼ 0. When
am > 0, the homogeneous states x� become periodic states
in the pseudospace. In spatial systems, the fronts remain
pinned even for finite values of a0, while propagating with
a velocity oscillating around a nonzero mean value for
larger asymmetry parameters. In Fig. 4, we plot the average
fronts velocity as a function of a0, for two values of the
modulation amplitude (solid curves). For parameters next
to the Maxwell point, we observe the existence of a pinning
region where the fronts velocity is zero. Outside this range,
a regime is found where one of the fronts starts propagating
while the other remains motionless [see inset (a)]. For
larger values ja0j, also, the second front is eventually
unpinned [inset (b)]. Both transitions occur via saddle-node
bifurcations in the front velocity. The results are in

FIG. 3 (color online). (a) Generation of a single-cell localized
structure from a rectangular initial condition. Inset: Generation
and annihilation of independent structures by applying optical
perturbations into the feedback loop. (b) Single- and multihump
localized structures, and (c) the corresponding transverse profile
at n ¼ 400. The initial condition is a sum of three rectangular
functions of widths w0 ≈ 0.11τ, 0.21τ, 3.1 × 10−3τ. Other param-
eters as in Fig. 1.
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excellent qualitative agreement with the experimental
observations reported in Fig. 2. This behavior is reminis-
cent of what is observed in 1D spatially periodic media,
where the presence of a spatial periodicity is known to
induce an energy barrier for the front propagation to occur.
Here, however, the transition from the pinning to the
propagation regime occurs via two separated saddle-node
bifurcations. When we increase the modulation amplitude,
the pinning region grows, whereas the average front speed
decreases.
Within the pinning region, stationary stable localized

states can be generated in two different ways: by preparing
the system in a suitable initial condition, or in response to
an external perturbation. An example is shown in Fig. 5(a),
demonstrating the coexistence of multihump solutions
for the considered parameters. In order to verify the
mutual independence of localized structures, we start
from a homogeneous initial condition x0ðtÞ ¼ x− and we
add to Eq. (1) a sequence of rectangular pulses
PðtÞ ¼ p0rect½ðt − tiÞ=wt�. In response to each perturba-
tion, the system undergoes a transient regime until a
stable stationary localized state is generated [Fig. 5(b)].
As expected, each structure remains totally unperturbed by
the creation of other nearby structures at subsequent times.
Since the spatial width of the addressing pulses is much
narrower than that of the modulation period, here, we
generate only single-hump localized states. Localized states
can also be individually erased by means of a suitable local
perturbation. To this end, we apply a pulse with negative
amplitude at the spatial position where a localized state
was previously created. In response to the perturbation, the
structure is switched off, leaving the other structures
unaffected. The phenomenology here described perfectly
matches the experimental findings shown in Fig. 3.

In conclusion, we have shown the occurrence of front
pinning phenomena and localized states in a long-delayed,
bistable system. Our results demonstrate that many con-
cepts associated to spatially localized structures also apply
in this framework. In addition, due to the absence of the
reversibility symmetry in the pseudospace, the splitting of
the unpinning transition is reported. While extending the
validity of the space-time analogy and verifying several
features of front dynamics, we expect our results to
possibly trigger new directions of theoretical and exper-
imental research. Moreover, the possibility of independ-
ently generating and erasing localized states might enable
their use as bits in faster, suitably designed, all-optical
setups.
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