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We study the dynamics of a laser-trapped nanoparticle in high vacuum. Using parametric coupling to an
external excitation source, the linewidth of the nanoparticle’s oscillation can be reduced by three orders of
magnitude. We show that the oscillation of the nanoparticle and the excitation source are synchronized,
exhibiting a well-defined phase relationship. Furthermore, the external source can be used to controllably
drive the nanoparticle into the nonlinear regime, thereby generating strong coupling between the different
translational modes of the nanoparticle. Our work contributes to the understanding of the nonlinear
dynamics of levitated nanoparticles in high vacuum and paves the way for studies of pattern formation,
chaos, and stochastic resonance.
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Synchronization of spatially separate processes occur in
biological, chemical, physical, and social systems, and
have attracted the interest of scientists for centuries.
Nanomechanical oscillators naturally lend themselves to
the experimental [1–5] and theoretical [6] study of non-
linear behavior and synchronization. The nonlinear regime
can be exploited for applications including phonon-cavity
cooling [7,8], precision frequency measurements [9], signal
amplification via stochastic resonance [10,11], mass
sensing [12] and quantum nondemolition measurements
[13–15]. In addition, nonlinear mechanical oscillators have
been proposed as memory elements [16,17] and to hallmark
classical to quantum transitions [18].
Recently, optically levitated nano- and microparticles

[19–22] have raised great interest because of their excep-
tional mechanical properties. While the mechanical
response of fabricated oscillators is determined by material
stress, the mechanical response of a levitated particle is
given by the shape of the optical potential. This allows for
control of the mechanical properties in situ and offers a
route toward strong nonlinearities by exploiting highly
localized optical near fields [23]. In addition, the quality
factor can be controlled by adjusting the gas pressure. Yet,
there have only been few experimental studies [19,24] of
levitated nanoparticle dynamics in high vacuum. In this
Letter, we investigate the response of a levitated nano-
particle in high vacuum to single frequency excitations. In
addition to nonlinear coupling between translational modes
and synchronization with an external source, we identify
collisions of the driven particle with residual air molecules
as additional features in the spectrum of the particle motion.
The experimental configuration is shown in Fig. 1. A

SiO2 nanoparticle of radius a ∼ 75 nm is trapped at the
focus of a single beam optical tweezer [19]. The motion of

the particle is imprinted on the phase of the light scattered
by the particle. In the forward direction, the scattered light
interferes with the transmitted beam giving rise to an
intensity pattern that depends on the particle position.
Using a balanced split detection scheme, the intensity
pattern yields information about the three dimensional
particle position in real time with a noise floor of
1 pm=

ffiffiffiffiffiffi
Hz

p
[19]. The ability to follow the three dimen-

sional trajectory of the nanoparticle distinguishes this
experiment from similar experiments with a trapped ion
[25,26], whose three dimensional trajectory cannot be
followed in real time because of the ion’s low scattering
cross section.
The particle motion consists of three modes, each

corresponding to a spatial oscillation along one of the
three symmetry axes of the optical intensity distribution.
The gradient of the optical intensity distribution exerts a
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FIG. 1 (color online). Experimental configuration. A SiO2

nanoparticle (a ∼ 75 nm) is trapped by a tightly focused laser
beam. The translational degrees of freedom of the nanoparticle
are measured with photodetectors and the center-of-mass motion
is cooled down by parametric feedback [19]. In addition to
feedback, we apply a resonant parametric modulation to excite
the particle into the nonlinear regime.
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restoring force Fgrad
i ¼ −kið1þ

P
j¼x;y;zξjx

2
jÞxi on a dipo-

lar particle that is displaced from the trap center by xi. Here,
the linear trap stiffness is given by ki ¼ αE2

0=w
2
i , where E0

is the electric field intensity at the focus, α is the polar-
izability, and wi is the beam waist radius (x,y) or Rayleigh
range (z), and the nonlinear coefficients are given by ξj ¼
−2=w2

j [24]. The nonlinear behavior and intermode cou-
pling can be understood in terms of a Gaussian model of the
focal intensity distribution [24]. The focal intensity dis-
tribution becomes wider as the distance to the focus
increases and consequently, the restoring force Fgrad

i
becomes weaker as the motional amplitude increases.
For a sphere of radius a and dielectric constant ϵp, the
quasistatic polarizability is α ¼ 4πa3ϵ0ðϵp − 1Þ=ðϵp þ 2Þ,
ϵ0 being the vacuum permittivity. Due to the asymmetry
of the optical focus, the oscillation frequencies Ωi ¼
ðki=mÞ1=2 along the three main axes are different
(Ωz=2π ∼ 37 kHz, Ωx=2π∼125 kHz, Ωy=2π ∼ 135 kHz),
m being the mass of the particle. By means of parametric
feedback cooling we are able to reach pressures of
0.5 × 10−6 mbar, where we measure Q factors of Q ¼
Ωi=Γ0 ≈ 2 × 108 [19,24]. Under the action of feedback
cooling, the effective thermal amplitude qeff ¼
ð2kBTeff=mΩ2

i Þ1=2 of the particle oscillation is kept much
smaller than the size of the trap, kB and Teff being the
Boltzmann constant and the effective temperature of the
center of mass motion, respectively. As a consequence,
coupling between the modes is negligible in the absence of
external modulation.
However, in addition to parametric feedback cooling we

also apply parametric modulation of frequency Ωm ≈ 2Ωi
with modulation depth ϵ. This modulation acts predomi-
nantly on the mode Ωi (Fig. 1) and allows us to control its
oscillation amplitude. For large oscillation amplitudes the
oscillator is driven into its nonlinear regime, where the
modes couple through cubic nonlinearities in the optical
force. Taking the three terms together (cooling, modulation,
and nonlinearities), the particle’s equation of motion
becomes [24]

Ω2
i

�
1þ ϵ cos ðΩmtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

parametric drive

þΩ−1
i ηq _q|fflfflfflffl{zfflfflfflffl}

feedback

þ ξq2|{z}
Duffing term

�
q

þ q̈þ Γ0 _q ¼ F fluct

m
≈ 0: (1)

Here, η is the nonlinear damping due to feedback cooling
and Γ0 is the (linear) damping due to collisions with
residual air molecules. It is related to the stochastic force by
the fluctuation-dissipation theorem hF fluctðtÞF fluctðt0Þi ¼
2mΓ0kBT0δðt − t0Þ, T0 being the temperature of the envi-
ronment. Since the three terms in the bracket (parametric
driving, feedback, Duffing term) are much stronger than the
stochastic force F fluct, the latter can be neglected and the

problem reduces to solving a deterministic equation of
motion.
For the following we consider the particle dynamics at

low pressures (Q ≫ 1) where the change in the oscillation
amplitude is slow compared to the oscillation frequency.
Thus, the solutions qðtÞ can be described by the ansatz

qðtÞ ¼ q0
2
AðτÞeiΩmt=2 þ c:c:; (2)

where we have introduced the dimensionless slow time
scale τ ¼ κΩit and the slowly varying displacement ampli-
tude AðτÞ with scale factors κ ¼ Γ0=Ωi ¼ Q−1 and
q20 ¼ κ=ξ. With ansatz (2) we obtain an equation of motion
for AðτÞ [6]

dA
dτ

¼ −
~γ0
2
Aþ i

~δm
2
A −

�
1

8
~η − i

3

8

�
jAj2Aþ i

~ϵ

4
A�; (3)

where ~δm ¼ δm=κ is the rescaled normalized detuning
δm ¼ ð2 −Ωm=ΩiÞ. We have also introduced the normal-
ized parameters ~γ0 ¼ Γ0=Ωiκ, ~η ¼ η=ξ, and ~ϵ ¼ ϵ=κ.
Equation (3) has up to three steady state solutions A0ðτÞ,
which fulfill dA0=dτ ¼ 0. The existence and stability of the
steady state solutions depend on the modulation parameters
ϵ and δm. Linearization around the steady state yields one
unstable solution and two stable solutions. The first stable
solution is the trivial low amplitude solution A0 ¼ 0. It is
stable if the linear stability condition,

ϵ <
2

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2δ2m

q
≈ 2δm; (4)

is fulfilled. The second stable solution is the high amplitude
solution [6],

q2 ¼ q20jA0j2 ¼ −
1

ηδ2th

×

2
43 ξ

η
δm þQ−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2thϵ

2 −
�
δm − 3

ξ

η
Q−1

�
2

s 3
5

≈ −
1

ηδ2th

�
3
ξ

η
δm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2thϵ

2 − δ2m

q �
; (5)

which is stable if the nonlinear stability condition,

ϵ > j δm
δth

j; (6)

with δth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ξ2 þ η2

p
=2η, is fulfilled. In (5) we have

converted back to physical quantities to facilitate the
interpretation of the experimental results. The approxima-
tion used in (5) holds for Q ≫ 1, which is the case for
typical experimental parameters.
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The data shown in Fig. 2 characterize the particle’s
response to an external parametric modulation close to the
resonance frequency of the x mode (Ωx=2π ∼ 125 kHz).
Figure 2(a) shows maps of the particle amplitude in the
ϵ-δm plane. The boundaries, which are marked as dashed
lines, are defined by the linear [black, Eq. (4)] and non-
linear [white, Eq. (6)] stability condition, respectively.
Positive and negative frequency scans [Fig. 2(a) top] and
modulation depth scans [Fig. 2(a), bottom] carry the
oscillator into the bistability region along different stable
attractors. This leads to hysteresis for the modulation
parameters ϵ and δm that fulfil both conditions (4) and
(6). Figure 2(b) shows a frequency up and down sweep
across the resonance for fixed modulation depth ϵ ¼
22 × 10−3 (cf., Fig. 2(a), horizontal dotted line). When
the modulation frequency is increased, the particle ampli-
tude follows the low amplitude solution while condition (4)
is fulfilled. Conversely, when the frequency is lowered the
particle follows the high amplitude solution while condition
(6) is true. We also observe bistability for up and down
sweeps of the modulation depth when the modulation
frequency is less than twice the particle resonance fre-
quency [cf., Fig. 2(c)]. If the modulation frequency is

larger, the transition is smooth and does not exhibit
hysteresis [cf., Fig. 2(d)]. Fitting the data to the theoretical
prediction allows us to extract the nonlinear coefficients
η ¼ 6 μm−2 and ξ ¼ −10 μm−2.
Until now, we have neglected coupling between the three

spatial modes. However, for large oscillation amplitudes, the
modes couple. The coupling has the same origin as the cubic
nonlinearities ξ. For a Gaussian intensity distribution at the
focus we find that the trap stiffness along x is of the form [24]

kðxÞtrap ¼ mΩ2
x

�
1þ

X
i¼x;y;z

ξðxÞi x2i

�
; (7)

and respective expressions hold for the trap stiffness along y
and z. Here, ξðxÞx ¼ ξ is the Duffing nonlinearity we have
considered so far and ξðxÞy and ξðxÞz are the nonlinear coupling
coefficients of y and z, respectively. The nonlinear coupling
gives rise to frequency shifts (pulling) of the orthogonal
modes. Equation (7) states that an increase in energy of any
mode downshifts the frequency of the x mode (note that ξðxÞi
is negative). To illustrate the nonlinear coupling, we sweep
the modulation frequency over a wide range covering both
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FIG. 2 (color online). Particle response to parametric modulation. (a) In the ϵ-δm plane the particle energy maps out different triangular
regions, depending on the history of the excitation. The color scale indicates the effective temperature or oscillation amplitude. To
increase the contrast the top left map is scaled by a factor 2. The upper row shows frequency sweeps at fixed modulation depth and the
bottom row shows modulation depth sweeps at fixed modulation frequency. The black dashed line indicates the (linear) instability
threshold (4), which marks the transition from the low amplitude solution to the high amplitude solution and the white dashed line
indicates the (nonlinear) instability threshold (6), which marks the transition from the high amplitude solution to the low amplitude
solution. (b) Frequency up and down sweep at ϵ ¼ 22 × 10−3 [black dotted line in subfigure (a) top row]. The blue dashed line is a fit to
(5). (c) Modulation depth up and down sweep at Ω0=2π ¼ 248.25 kHz and (d) at Ω0=2π ¼ 250.25 kHz [black dotted lines in subfigure
(a) bottom row]. The blue dashed line is a fit to Eq. (5). By fitting to the theoretical model (5) we extract the nonlinear parameters
η ¼ 6 μm−2 and ξ ¼ −10 μm−2.
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the x and the y resonances and record the power spectral
density for each value of the modulation frequency.
Figures 3(b), 3(c) show the resulting maps of the

frequency components of the motion along x and y,
respectively, for a downward sweep at 1.6 × 10−4 mbar
with modulation depth ϵ ¼ 8 × 10−3. The parametric
modulation frequency is reduced from 285 down to
230 kHz, exciting first the y mode and then the x mode.
Figure 3(a) shows that within the lock-in range given by
Eq. (6), energy is transferred to the resonant mode while the
off-resonant modes stay at low energy. Therefore, the
driven particle motion is essentially one dimensional along
the axis of the resonant mode. Modulation at Ωm generates
motional sidebands at Ωi � Ωm. When the lower sideband
Ωm −Ωi approaches the resonance, it resonantly transfers
energy to the particle, and the energy of the resonant mode
increases. The modulation sideband is clearly visible in
Fig. 3(b). Starting at 256 kHz it approaches 2Ωx∼ 252 kHz.
For Ωm −Ωx ≲ 2Ωx, the sideband and the natural mode
Ωx disappear and a strong mode at Ωm=2 appears. This
mode remains stable as long as (6) holds. For smaller
values of Ωm, the mode at Ωm=2 vanishes (here at
Ωm=2π ≈ 243 kHz), and the natural mode Ωx and the
modulation sideband Ωm −Ωx reappear. Additionally, we
observe the frequency-pulling of the nonresonant modes

predicted by (7). Note that the nonlinear frequency shifts as
much as 5 kHz, which corresponds to ∼107 times the
linewidth Γ0.
Within the lock-in region, the particle motion is phase

locked to the external modulation as shown in Fig. 3(d).
Clearly, the resonance is much sharper than the expected
Γ0 ∼ 5 Hz at 5.4 × 10−3 mbar, indicating that the particle
faithfully follows the modulation of the external source
(Agilent 33521A). Besides, since the phase between the
modulation and the particle is fixed, we observe a butterfly
shaped Lissajous figure when plotting the particle position
against the modulation signal [cf., inset Fig. 3(d)].
Near the strong peak at Ωm=2 within the lock-in region,

we observe sidebands [cf. Figs. 3(b),(c)]. The sidebands
originate from small perturbations of the steady state
caused by collisions with residual air molecules.
Linearizing the equation of motion (3) around the steady
state (5) we find the characteristic frequencies,

Ω� ¼ Ωm=2� Ωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
ξq2

�
3

4
ξq2 þ δm

�
−
�
Q−1

2

�
2

s
; (8)

of the sidebands. Figure 3(e) shows the sideband shift
ΔΩ� ¼ Ω� − Ωm=2 extracted from Fig. 3(c) to be in good
agreement with the theoretical prediction (8).

265 270 275 280 285

-2

-1

0

1

2

mod. freq. [kHz]

Theory

Experiment

(e)

Si
de

ba
nd

Sh
if

t
[k

H
z]

116 960 117 000 117 040
0.001

0.1

10

1000

10
5

frequency [Hz]

PS
D

 [
nm

 /H
z]

2
(d)

x [nm]

M
od

 [
ar

b.
 u

.]
-100 0 100

-20

0

20

E
ne

rg
y 

[K
]

fr
eq

ue
nc

y 
k[

H
z]

115

120

125

130
130

135

140

145

x
y

z

280270260250240230

modulation sideband

natural mode x

lock-in range ylock-in range x

(b)

(c)

(a)

pulled mode x

pulled mode y

locked mode x

locked mode y

downward sweep

natural mode y

sidebands of locked motion

10
100

1000

modulation frequency [kHz]

FIG. 3 (color online). Nonlinear mode coupling and synchronization. (a)–(c) The parametric modulation frequency Ωm=2π is reduced
from 285 down to 230 kHz exciting the resonances of the x and y modes, respectively. (a) Within the lock-in range energy is transferred
to the resonant mode. (b)–(c) The spectral map of the ith mode (i ¼ x, y) reveals that within the lock-in range the modulation sideband
(Ωm − Ωi) and the natural mode (Ωi) merge and give rise to a single oscillation at Ωm=2. If the mode [i ¼ xðyÞ] is driven resonantly,
nonlinear coupling pulls the frequency of the off-resonant [i ¼ yðxÞ] mode toward lower frequencies. (d) The resonant mode phase
locks to the external modulation. The resonance is considerably sharper than the natural linewidth Γ0 ∼ 5kHz defined by the vacuum
pressure. The observation of a Lissajous figure in the density histogram of the particle motion versus the external modulation signal
indicates that the particle phase is locked to the external modulation (inset). (e) Sidebands of y mode as a function of modulation
frequency Ωm extracted from subfigure (c). Open circles are the experimental data and dashed lines are the theoretical curves (8)
with nonlinear coefficients ξ ¼ −9 μm−2 and η ¼ 0.6 μm−2 obtained from a fit to the amplitude response [cf., Fig. 3(a)]. In Figs. 3(a),
(b),(c),(e), the pressure and modulation depth are 1.6 × 10−4 mbar (Q ∼ 106) and ϵ ¼ 8 × 10−3, respectively. In Fig. 3(d) it is
5.4 × 10−3 mbar and ϵ ¼ 21 × 10−3.
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In conclusion, we have parametrically excited an opti-
cally levitated nanoparticle in high vacuum well into the
nonlinear regime. We have shown that each of the three
individual spatial modes can be excited independently if
parametric feedback keeps the oscillation amplitude below
the thermal amplitude. For larger oscillation amplitudes we
observe nonlinear coupling between the modes. Using
parametric coupling, the particle can be synchronized to
an external source. A synchronized nanoparticle can act as
a coherent nanoscale source of electric, magnetic [27,28] or
gravitational forces [29]. The present work adds to our
understanding of the dynamics of levitated nanoparticles in
high vacuum and paves the way for applications in sensing
[24,30] and macroscopic quantum mechanics [31,32].
Furthermore, nonlinear coupling can be explored for multi-
mode sensing [33], phonon-cavity cooling [7], and fre-
quency stabilization [34]. We also expect interesting
results from further investigating the nanoparticle’s
three-dimensional dynamics in response to multifrequency
driving fields [35], thermal excitation [24], and coupling to
other levitated nanoparticles [36,37]. This includes pattern
formation [38], chaos [3], and stochastic resonance [11,39].
Finally, in contrast to conventional nanomechanical oscil-
lators, a levitated particle can rotate freely [40], thereby
adding to the richness of the dynamics [41].

This work has been supported by ERC-QMES
(No. 338763), ERC-Plasmolight (No. 259196), Marie
Curie COFUND (FP7-PEOPLE-2010-COFUND), and
Fundació Privada CELLEX.

*jan.gieseler@hotmail.com
[1] A. Eichler, M. del Álamo Ruiz, J. A. Plaza, and A. Bachtold,

Phys. Rev. Lett., 109, 025503 (2012)
[2] L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny,

R. Lifshitz, M. C. Cross, and M. L. Roukes, Phys. Rev.
Lett., 110, 177208 (2013).

[3] R. B. Karabalin, M. C. Cross, and M. L. Roukes, Phys. Rev.
B, 79, 165309 (2009).

[4] K. J. Lulla, R. B. Cousins, A. Venkatesan, M. J. Patton, A.
D. Armour, C. J. Mellor, and J. R. Owers-Bradley, New J.
Phys., 14, 113040 (2012).

[5] M. H. Matheny, L. G. Villanueva, R. B. Karabalin, J. E.
Sader, and M. L. Roukes, Nano Lett., 13, 1622 (2013).

[6] R. Lifshitz and M. C. Cross, Review of Nonlinear Dynamics
and Complexity (Wiley, New York, 2009).

[7] I. Mahboob, K. Nishiguchi, H. Okamoto, and H.
Yamaguchi, Nat. Phys., 8, 387 (2012).

[8] W. J. Venstra, H. J. R. Westra, and H. S. J. van der Zant,
Appl. Phys. Lett., 99, 151904 (2011).

[9] J. S. Aldridge and A. N. Cleland, Phys. Rev. Lett., 94,
156403 (2005).

[10] R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks, Appl.
Phys. Lett., 90, 013508 (2007).

[11] W. J. Venstra, H. J. R. Westra, and H. S. J. van der Zant, Nat.
Commun., 4, 2624 (2013).

[12] E. Buks and B. Yurke, Phys. Rev. E, 74, 046619 (2006).

[13] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg,
and M. Zimmermann, Rev. Mod. Phys., 52, 341 (1980).

[14] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Science,
209, 547 (1980).

[15] W. G. Unruh, Phys. Rev. D, 18, 1764 (1978).
[16] I. Mahboob and H. Yamaguchi, Nat. Nanotechnol., 3, 275

(2008).
[17] M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X.

Tang, Nat. Nanotechnol., 6, 726 (2011).
[18] I. Katz, A. Retzker, R. Straub, and R. Lifshitz, Phys. Rev.

Lett., 99, 040404 (2007).
[19] J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, Phys.

Rev. Lett., 109, 103603 (2012).
[20] T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, Science,

328, 1673 (2010).
[21] T. Li, S. Kheifets, and M. G. Raizen, Nat. Phys., 7, 527

(2011).
[22] N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and

M. Aspelmeyer, Proc. Natl. Acad. Sci. U.S.A., 110, 14180
(2013).

[23] L. Novotny and B. Hecht, Principles of Nano-Optics (Cam-
bridgeUniversity Press, Cambridge, England, 2012), 2nd ed.

[24] J. Gieseler, L. Novotny, and R. Quidant, Nat. Phys., 9, 806
(2013).

[25] N. Akerman, S. Kotler, Y. Glickman, Y. Dallal, A. Keselman,
and R. Ozeri, Phys. Rev. A, 82, 061402 (2010).

[26] S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T. W.
Hänsch, K. Vahala, and Th. Udem, Phys. Rev. Lett., 105,
013004 (2010).

[27] M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J.
Brown, F. Javier García de Abajo, F. Koppens, and R.
Quidant, Nat. Nanotechnol., 8, 175 (2013).

[28] L. P. Neukirch, J. Gieseler, R. Quidant, L. Novotny, and A.
N. Vamivakas, Opt. Lett., 38, 2976 (2013).

[29] A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett., 110,
071105 (2013).

[30] J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E.
Liu, M. I. Dykman, and A. Bachtold, Nat. Nanotechnol., 8,
493 (2013).

[31] M. Poot andH. S. J. vander Zant, Phys. Rep., 511, 273 (2012).
[32] M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today,

65, 29 (2012).
[33] M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E. C.

Bullard, E. Colinet, L. Duraffourg, and M. L. Roukes, Nat.
Nanotechnol., 7, 602 (2012).

[34] D. Antonio, D. H. Zanette, and D. López, Nat. Commun., 3,
806 (2012).

[35] H. J. R. Westra, M. Poot, H. S. J. van der Zant, and W. J.
Venstra, Phys. Rev. Lett., 105, 117205 (2010).

[36] C. A. Holmes, C. P. Meaney, and G. J. Milburn, Phys. Rev.
E, 85, 066203 (2012).

[37] W. Lechner, S. J. M. Habraken, N. Kiesel, M. Aspelmeyer,
and P. Zoller, Phys. Rev. Lett., 110, 143604 (2013).

[38] E. Kenig, R. Lifshitz, and M. C. Cross, Phys. Rev. E, 79,
026203 (2009).

[39] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev.
Mod. Phys., 70, 223 (1998).

[40] Y. Arita, M. Mazilu, and K. Dholakia, Nat. Commun., 4,
2374 (2013).

[41] A. Manjavacas and F. J. García de Abajo, Phys. Rev. Lett.,
105, 113601 (2010).

PRL 112, 103603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 MARCH 2014

103603-5

http://dx.doi.org/10.1103/PhysRevLett.109.025503
http://dx.doi.org/10.1103/PhysRevLett.110.177208
http://dx.doi.org/10.1103/PhysRevLett.110.177208
http://dx.doi.org/10.1103/PhysRevB.79.165309
http://dx.doi.org/10.1103/PhysRevB.79.165309
http://dx.doi.org/10.1088/1367-2630/14/11/113040
http://dx.doi.org/10.1088/1367-2630/14/11/113040
http://dx.doi.org/10.1021/nl400070e
http://dx.doi.org/10.1038/nphys2277
http://dx.doi.org/10.1063/1.3650714
http://dx.doi.org/10.1103/PhysRevLett.94.156403
http://dx.doi.org/10.1103/PhysRevLett.94.156403
http://dx.doi.org/10.1063/1.2430689
http://dx.doi.org/10.1063/1.2430689
http://dx.doi.org/10.1038/ncomms3624
http://dx.doi.org/10.1038/ncomms3624
http://dx.doi.org/10.1103/PhysRevE.74.046619
http://dx.doi.org/10.1103/RevModPhys.52.341
http://dx.doi.org/10.1126/science.209.4456.547
http://dx.doi.org/10.1126/science.209.4456.547
http://dx.doi.org/10.1103/PhysRevD.18.1764
http://dx.doi.org/10.1038/nnano.2008.84
http://dx.doi.org/10.1038/nnano.2008.84
http://dx.doi.org/10.1038/nnano.2011.180
http://dx.doi.org/10.1103/PhysRevLett.99.040404
http://dx.doi.org/10.1103/PhysRevLett.99.040404
http://dx.doi.org/10.1103/PhysRevLett.109.103603
http://dx.doi.org/10.1103/PhysRevLett.109.103603
http://dx.doi.org/10.1126/science.1189403
http://dx.doi.org/10.1126/science.1189403
http://dx.doi.org/10.1038/nphys1952
http://dx.doi.org/10.1038/nphys1952
http://dx.doi.org/10.1073/pnas.1309167110
http://dx.doi.org/10.1073/pnas.1309167110
http://dx.doi.org/10.1038/nphys2798
http://dx.doi.org/10.1038/nphys2798
http://dx.doi.org/10.1103/PhysRevA.82.061402
http://dx.doi.org/10.1103/PhysRevLett.105.013004
http://dx.doi.org/10.1103/PhysRevLett.105.013004
http://dx.doi.org/10.1038/nnano.2012.259
http://dx.doi.org/10.1364/OL.38.002976
http://dx.doi.org/10.1103/PhysRevLett.110.071105
http://dx.doi.org/10.1103/PhysRevLett.110.071105
http://dx.doi.org/10.1038/nnano.2013.97
http://dx.doi.org/10.1038/nnano.2013.97
http://dx.doi.org/10.1016/j.physrep.2011.12.004
http://dx.doi.org/10.1063/PT.3.1640
http://dx.doi.org/10.1063/PT.3.1640
http://dx.doi.org/10.1038/nnano.2012.119
http://dx.doi.org/10.1038/nnano.2012.119
http://dx.doi.org/10.1038/ncomms1813
http://dx.doi.org/10.1038/ncomms1813
http://dx.doi.org/10.1103/PhysRevLett.105.117205
http://dx.doi.org/10.1103/PhysRevE.85.066203
http://dx.doi.org/10.1103/PhysRevE.85.066203
http://dx.doi.org/10.1103/PhysRevLett.110.143604
http://dx.doi.org/10.1103/PhysRevE.79.026203
http://dx.doi.org/10.1103/PhysRevE.79.026203
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1038/ncomms3374
http://dx.doi.org/10.1038/ncomms3374
http://dx.doi.org/10.1103/PhysRevLett.105.113601
http://dx.doi.org/10.1103/PhysRevLett.105.113601

