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We propose a method of controlling two- and three-body interactions in an ultracold Bose gas in any
dimension. The method requires us to have two coupled internal single-particle states split in energy such
that the upper state is occupied virtually but amply during collisions. By varying system parameters, one
can switch off the two-body interaction while maintaining a strong three-body one. The mechanism can be
implemented for dipolar bosons in the bilayer configuration with tunneling or in an atomic system by using
radio-frequency fields to couple two hyperfine states. One can then aim to observe a purely three-body
interacting gas, dilute self-trapped droplets, the paired superfluid phase, Pfaffian state, and other exotic
phenomena.
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The Feshbach resonance technique, which allows for
tuning the two-body interaction to any value, has been a
major breakthrough in the field of quantum gases [1].
Reaching strongly interacting regimes by using this method
is proven successful in two-component fermionic mixtures
[2] because of the naturally built-in mechanism of sup-
pression of local three-body inelastic processes [3]: the
Pauli principle prohibits three fermions to be close to each
other as at least two of them are identical. Essentially the
same mechanism is responsible for the repulsion between
weakly bound molecules in this system, ensuring the
mechanical stability. Bosons, having no such protection,
are much more fragile. A Bose-Einstein condensate (BEC)
collapses in free space even for infinitesimally weak
attraction [4] not to mention devastating recombination
losses close to resonance [5,6].
A repulsive three-body force can stabilize the system and

induce nontrivial many-body effects. A weakly interacting
BEC with two-body attraction (coupling constant g2 < 0)
and three-body repulsion (g3 > 0) is predicted to be a
droplet, the density of which in the absence of external
confinement and neglecting the surface tension is flat and
equals n ¼ −3g2=2g3 [7–9]. For a strong (beyond mean-
field) two-bodyattraction thespinlessBosegascanpass from
the atomic to paired superfluid phase via an Ising-type
transition with peculiar topological properties [10–12].
However, the mechanical stability of the system requires
repulsive few-body interactions [13] or other stabilizing
mechanisms [14]. Few-body forces are also important for
quantum Hall problems: the exact ground state of bosons in
the lowest Landau level with a repulsive three-body contact
interaction is the Pfaffian state [15] also known as the weak-
pairing phase and characterized by non-Abelian excitations
[16]. Interestingly, a finite rangeof the three-body interaction
breaks the pairing [17]. On the other hand, there may
be a transition from the weak- to strong-pairing Abelian
phase [18], presumably driven by varying g2.

Most proposals for generating effective three-body
interactions deal with lattice systems [19–24]. In free
space, since three-body effects are significant when g3n
is of order g2, staying in the dilute regime requires small g2
and large g3. In three dimensions, a resonant three-body
force is predicted for large and negative scattering lengths
when a three-body Efimov state crosses the three-atom
threshold [7,25–27]. This method is associated with
strong relaxation losses [28], although nonconservative
three-body interactions can also lead to interesting effects
[20,29].
This Letter is motivated by the observation that dipolar

particles trapped on a single layer and oriented
perpendicular to the plane repel each other, whereas in a
bilayer configuration there is always a bound state [30–34].
We argue that the bound state emerges from the scattering
continuum as one gradually splits the layer into two and
reduces the interlayer tunneling amplitude below a critical
value t ¼ tc. We show that near this point g2 ∝ t − tc
providing the desired control over the two-body interaction.
Next, we find that the three-body interaction near this zero
crossing is repulsive and conservative: similar to the
fermionic Pauli protection three dipoles are frustrated in
the sense that at least two of them are on the same layer and,
therefore, experience repulsion. Surprising and counterin-
tuitive is that the effective three-body repulsion strengthens
with decreasing the dipole-dipole interaction and interlayer
tunneling amplitude. The reason is that the scattering wave
function of two dipoles contains a significant contribution
of a virtually excited interlayer dimer state of size ∼1=

ffiffi
t

p
.

The effective three-body force originates from the inter-
action of the third particle with this state and becomes
stronger with decreasing t. Based on this understanding we
propose a general method of controlling few-body inter-
actions applicable for atomic systems in any dimension.
The Hamiltonian of bosonic dipoles in the bilayer

geometry with tunneling is written as (cf. [35])
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†
σ0r0Vσσ0 ðjr − r0jÞΨσrΨσ0r0 ; (1)

where Ψ†
σr is the creation operator of a boson on layer σð¼

↑;↓Þ with in-plane coordinate r and we neglect the trans-
verse extension of the wave function within the layers
compared to the interlayer distance λ. We adopt the units
λ ¼ ℏ ¼ m ¼ 1. Then, for dipoles oriented perpendicular
to the plane the intralayer and interlayer potentials equal
VσσðrÞ ¼ r�=r3 and Vσσ0 ðrÞjσ≠σ0 ¼ r�ðr2 − 2Þ=ðr2 þ 1Þ5=2,
respectively, and r� is the characteristic length scale of the
dipole-dipole potential.
The one-body spectrum of (1) consists of two branches

with dispersions εþðkÞ ¼ k2=2 and ε−ðkÞ¼2tþk2=2. The
corresponding eigenfunctions are ϕ�;k ¼ j�i expðik · rÞ
with spinor parts j�i ¼ ðj↑i � j↓iÞ= ffiffiffi

2
p

. We assume that
the temperature and typical interaction scales are lower
than t so that the upper branch is excited only virtually
during collisions. Moreover, due to the ↑-↓ symmetry, the
Hamiltonian (1) couples the lowest two-body spinor
configuration ðjþiÞ2 only to the highest one, ðj−iÞ2.
The gap is then effectively 4t. Writing the wave function
of the relative motion in the form ðj↑ij↑iþ
j↓ij↓iÞϕ↑↑ðrÞ þ ðj↑ij↓i þ j↓ij↑iÞϕ↑↓ðrÞ, we obtain the
two-channel Schrödinger equation

�
−∇2

r − Eþ
�
V↑↑ðrÞ þ 2t −2t

−2t V↑↓ðrÞ þ 2t

���
ϕ↑↑

ϕ↑↓

�
¼ 0.

(2)

The bound state in the potential V↑↓ [30–34,36] is a true
eigenstate of our model in the limit t → 0. Its wave function
contains only the ϕ↑↓ part; i.e., the two dipoles are
localized on different layers. The binding survives small
t since the cost of this localization is of order the (small)
tunneling energy. However, for t > tc the localization
becomes too expensive and the bound state crosses the
two-particle threshold. Solid line in Fig. 1 shows tc as a
function of r� obtained numerically from Eq. (2).
The low energy and small momentum properties of this

rather unusual two-dimensional scattering problem with
long-range interactions are described in terms of the vertex
functionΓðE;k;k0Þ, whereE is the total energy in the center
of mass reference frame and k and k0 are the incoming and
outgoing relative momenta, respectively. For sufficiently
weakly bound or quasibound state, i.e., when t is close to tc,
we can repeat arguments of Ref. [34] and write

ΓðE;k;k0Þ ≈ 4π

lnð4t=EÞ þ 4π=g2 þ iπ
− 2πr�jk − k0j; (3)

which, in our case, is valid forE ∼ k2 ∼ k02 ≪ t. The second
term in Eq. (3) accounts for the long-range dipole-dipole

interaction tail and the first one is the usual single-pole
expression for the scattering amplitude, which effectively
integrates out the short-range radial motion and σ degrees of
freedomofEq. (2).“Short-range” inourcasemeansdistances
smaller than 1=

ffiffi
t

p
(see below). For small g2 one can neglect

the logarithmic and imaginary terms in the denominator of
Eq. (3) arrivingatΓ ≈ g2 − 2πr�jk − k0j.Thenamecoupling
constant is thus attached to g2 with the reservation that the
neglected logarithmcan become important for exponentially
small energies E ∼ t expð−4π=jg2jÞ, in particular, when
looking for poles of the scattering amplitude: as g2
approacheszerofrombelow, there isanexponentiallyweakly
bound state with the binding energy ε0 ¼ 4t expð4π=g2Þ.
Close to thecrossingpointg2 isproportional to t − tcwitha

positive coefficient: for t < tc the two-body interaction is
attractive (supports a bound state) and vice versa. To see
how sensitive g2 is to variations of t for different r�, in Fig. 1
we show the region −0.4 < g2 < 0.4 enclosed by dotted
lines. Making g2 small at large r� requires a more subtle
tuning because of a potential barrier which separates the
scattering continuum from the bound state localized in this
case at small r. The barrier is given by V↑↑ðrÞ and V↑↓ðrÞ,
which are both ∝ r� and positive for r >

ffiffiffi
2

p
. We should

note that our results become qualitative for t ∼ 1 (r� > 2 or
so) when the thickness of the layers comes into play. One
then has to consider a full three-dimensional Hamiltonian
instead of the idealized two-dimensional model (1).
For r� ≪ 1 we solve the problem analytically by sub-

stituting for Vσσ0 zero-range (ZR) pseudopotentials with
proper low-energy scattering properties [31]. In terms of
Bessel functions the two-body wave function reads

Ψ ¼ ðjþiÞ2½J0ðqrÞ − ifzrðqÞH0ðqrÞ=4� þ Cðj−iÞ2K0ðκrÞ;
(4)

where q is the collision momentum and κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t − q2

p
. The

scattering amplitude
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FIG. 1. Critical tunneling amplitude tc vs. r� (solid line). For
t < tc the two-body interaction is attractive and supports a bound
state. The dotted lines enclose the region −0.4 < g2 < 0.4. The
dashed line is the prediction of the zero-range theory tc ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E↑↓E↑↑
p

=4 valid for small r�.
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fzrðqÞ ¼
2π

ln κ
q − ln κ2

E↑↓
ln κ2

E↑↑
= ln κ4

E↑↓E↑↑
þ i π

2

(5)

and coefficient C ¼ ð2πÞ−1fzrðqÞ ln E↑↓

E↑↑
= ln κ4

E↑↑E↑↓
are deter-

mined from the ZR boundary conditions: ϕ↑↑ðrÞ ∝
lnð ffiffiffiffiffiffiffiffi

E↑↑
p

reγ=2Þ and ϕ↑↓ðrÞ ∝ lnð ffiffiffiffiffiffiffiffi
E↑↓

p
reγ=2Þ, where γ ≈

0.5772 is the Euler constant, E↑↑ ¼ 4 expð−6γÞr−2� [37],
and E↑↓ ≈ 4 expð−8=r2�Þ [33,34,38]. fzrð0Þ vanishes for
exponentially small t ¼ tc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E↑↓E↑↑

p
=4 ∝ expð−4=r2�Þ.

We see that the ZR approximation is justified since typical
length scales, ∼1=

ffiffiffiffi
tc

p
, are exponentially large compared to

the range of Vσσ0 . At r� ≈ 0.7 the ZR result for tc (dashed
line in Fig. 1) deviates from the exact one by only about
10%. The ZR approximation also predicts the dependence
g2 ≈ 16πðlnE↑↑=E↑↓Þ−2ðt − tcÞ=tc, valid for ðt − tcÞ=
tc ≪ 1 and established by comparing Eq. (5) with the
on-shell version of Eq. (3).
We find that for r� ≲ 0.7 and q < 2

ffiffi
t

p
the exact s-wave

scattering amplitude is well approximated by
fðqÞ ≈ fzrðqÞ − 8r�q, where the last term is the s-wave
component of −2πr�jq − q0j [see Eq. (3)] taken on the
mass shell, q ¼ q0. Figure 2 shows −4 tan δðqÞ (solid lines)
and −4 tan δzrðqÞ − 8r�q (dashed lines) as functions of q
for r� ¼ 0.65 and five values of t close to tc. Here we
introduce the s-wave scattering phase shift δ and benefit
from the relation f ¼ −4=ðcot δ − iÞ ≈ −4 tan δ valid for
small tan δ. We also present fðqÞ ≈ g2 − 8r�q (dotted
lines), which is the s-wave on-shell version of the approxi-
mation Γ ≈ g2 − 2πr�jq − q0j. The inset in Fig. 2 shows the
case r� ¼ 1.3 and we omit the ZR curves which are quite
far off for this value of r�.
Let us now discuss the three-body problem. In three

dimensions, g3 can be defined as the interaction energy

shift of three condensed bosons in a unit volume with
subtracted two-body contributions or, equivalently, in terms
of the on-shell vertex functions at zero momenta,

g3 ¼ hfree3jV̂jtrue3i − 3hfree2jV̂jtrue2i; (6)

where V̂ is the interaction term in Eq. (1), jfreeni ¼ ðjþiÞn
is the ground state of n noninteracting bosons, and jtrueni is
the true zero energy n-body eigenstate of Eq. (1), normal-
ized per unit volume. In two dimensions, due to the two-
dimensional kinematics [39], the vertex functions should be
considered at finite E. In our case the region where Eq. (6)
remains approximately constant (thus defining g3) is given
by the inequalities jg2j ≪ 1 and t expð−4π=jg2jÞ ≪ E ≪ t.
In Fig. 3 (solid line) we show g3 calculated at the point
g2 ¼ E ¼ 0 which belongs to this region. We see that g3 is
always repulsive and rather large. It reaches g3;min ≈ 1530
at r� ¼ 0.94. In order to compute jtrue3iwe solve the three-
body version of Eq. (2) [40] by using the adiabatic
hyperspherical approach [41,42].
The surprising enhancement of g3 for small r� can be

understood from the ZR analysis. In the case q ¼ 0 and
fzrð0Þ ¼ 0 the ðjþiÞ2-term in Eq. (4) stands for two
noninteracting bosons on a unit surface. The ðj−iÞ2-term
describes a “bound” pair of particles. Although C ¼
−2= ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E↑↑=E↑↓

p
is small, the pair has an exponentially

large size ∼1=
ffiffiffiffi
tc

p
. The effective three-body force origi-

nates from the interaction of the third boson (in state jþi)
with either of these two particles, the collision energy
being ∼tc. Due to the bosonic symmetry the dominant
s-wave interaction between jþi- and j−i-particles is
given by the repulsive V↑↑, which, at these energies,
can be substituted by the corresponding vertex part
≈4π= lnðE↑↑=tcÞ ≈ 4π= ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E↑↑=E↑↓

p
. Overall, we obtain

g3 ∝ t−1c ðln ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E↑↑=E↑↓

p Þ−3, in which the factor 1=tc pro-
vides the main (exponential) dependence on r�. In a
more rigorous perturbation theory [40] the two
leading terms in the expansion of g3 in the small para-
meter ξ ¼ 1= ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E↑↑=E↑↓

p
read g3;zr ¼ ð24π2=tcÞ½ξ3 −

3 lnð4=3Þξ4 þ…� (dashed line in Fig. 3).
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FIG. 2. The function −4 tan δ vs. the collision momentum q
(solid lines) for r� ¼ 0.65 for five values of g2: g2 ¼ 0.4
(t ¼ 2.4tc), g2 ¼ 0.2 (t ¼ 1.5tc), g2 ¼ 0 (t ¼ tc ¼ 5 × 10−4),
g2 ¼ −0.2 (t ¼ 0.65tc), and g2 ¼ −0.4 (t ¼ 0.42tc).
We also plot the approximations −4 tan δ ≈ −4 tan δzr − 8r�q
(dashed lines) and −4 tan δ ≈ g2 − 8r�q (dotted lines). Inset
shows the case r� ¼ 1.3 for the same set of g2, the tunneling
amplitudes are t ¼ 1.045tc, t ¼ 1.023tc, t ¼ tc ¼ 0.05,
t ¼ 0.977tc, and t ¼ 0.953tc.
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FIG. 3. The three-body coupling constant g3 (solid) vs. r� for
t ¼ tcðr�Þ, i.e., for vanishing effective two-body interaction.
The dashed line shows the result of the zero-range approximation
(see text).
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That g3 stays positive for all r� is a manifestation of the
three-body frustration: at least two particles are on the same
layer and, therefore, experience the repulsive potential V↑↑.
We claim that this mechanism protects the system against
collapse and is responsible for a microscopic suppression of
the local three-body correlation function, which clearly
means suppressed three-body losses. It has been predicted
[43,44] and observed [45] that inelastic processes can be
suppressed by tightly confining dipoles to the two-dimen-
sional geometry. Here we argue that the bilayer case with
tunneling provides control over the interparticle interaction
while preserving this suppression mechanism.
For RbK molecules with the interlayer distance λ ¼

532 nm the energy unit ℏ2=mλ2 corresponds to 280 Hz or
13.4 nK, which is rather small. However, for lighter
molecules and shorter lattice periods [46] one can gain
an order of magnitude or more. It is also useful to keep in
mind that similarly to spinor condensates the temperature
requirement is rather loose [47], more important is that the
BEC chemical potential is smaller than ℏ2=mλ2, which is
quite realistic.
The Hamiltonian (1) in the rotating wave approximation

also describes an atomic gas in which two hyperfine states
(↑ and ↓) are coupled by a resonant microwave or radio
frequency field with the Rabi frequency 2t. Here we can
have significantly larger t than in the bilayer dipolar case
[48]. However, in order to see three-body effects one has to
control the three scattering lengths a↑↑, a↓↓, and
a↑↓ ¼ a↓↑. The condition a↑↑ ¼ a↓↓ is not necessary,
but for simplicity let us assume that it holds.
An advantage of the “atomic” method is that the ZR

approximation is essentially exact. In three dimensions we
obtain [40]

fð3DÞðqÞ ¼ −
�

2 − ða↑↑ þ a↑↓Þκ
a↑↑ þ a↑↓ − 2a↑↑a↑↓κ

þ iq

�−1
. (7)

The effective scattering length vanishes for
ffiffiffiffi
tc

p ¼
ð1=a↑↑ þ 1=a↑↓Þ=4. The three-body coupling constant
can be calculated analytically for small ξ ¼ ða↑↓ þ a↑↑Þ=
ða↑↓ − a↑↑Þ. Exactly at tc the leading term reads g3 ≈
3π2ξ3=t2c ≈ 48π2a4↑↑=ξ [40]. This is by 1=ξ ≫ 1 larger than
the usual three-body scaling ∝ a4 which appears only in the
next order and, in particular, contains an imaginary part.
Since it gives an estimate for the three-body recombination
rate, the ratio of elastic to inelastic three-body interaction is
∝ 1=ξ. Note, that in order to have a strong elastic three-
body repulsion the scattering lengths are not required to be
large. However, they should be very close in absolute
values and have opposite signs: a↑↑ > 0 and a↑↓ ¼
−a↑↑ð1þ 2ξÞ. Lysebo and Veseth [49] predict rich pos-
sibilities for tuning interactions in between various hyper-
fine states of 39K. In particular, states F ¼ 1, mF ¼ 0 and
F ¼ 1,mF ¼ −1 in the magnetic field region from 50 to 60
Gauss can potentially give the desired effect, but one has to
generalize the above theory to the case a↑↑ ≠ a↓↓.

In the two-dimensional case we can use the ZR formulas
presented for the bilayer geometry with Eσσ0 ¼
B=ðπl20Þ expð

ffiffiffiffiffiffi
2π

p
l0=aσσ0 Þ [50], where l0 is the transverse

oscillator length and B ≈ 0.9. Here the restriction on
possible values of aσσ0 is softer than in three dimensions.
It originates from the requirement to stay in the
two-dimensional regime, tc ≪ 1=l20, and reads
exp½ ffiffiffiffiffiffiffiffi

π=2
p

l0ð1=a↑↑ þ 1=a↑↓Þ� ≪ 1.
The one-dimensional case can be realized by strongly

confining atoms in two radial directions (or, for dipoles, in
the bitube geometry). Introducing the one-dimensional
scattering lengths a1;σσ0 ¼ −l20=aσσ0 ð1 − C0aσσ0=l0Þ, where
C0 ≈ 1.0326 [51], from Eq. (2) we obtain [40]

fð1DÞðqÞ ¼ −
�
1þ iq

a1;↑↑ þ a1;↑↓ − 2a1;↑↑a1;↑↓κ

2 − ða1;↑↑ þ a1;↑↓Þκ
�−1

. (8)

The two-body coupling constant vanishes for
ffiffiffiffi
tc

p ¼
1=ða1;↑↑ þ a1;↑↓Þ. At this point the three-body problem
is equivalent to a two-dimensional one-body scattering by a
potential with the range ∼1=

ffiffiffiffi
tc

p
. The three-body inter-

action is conservative and repulsive for a1;↑↑ < 0 reaching
its maximum at a1;↑↑ ¼ 0 where the corresponding two-
dimensional scattering length is of order 1=

ffiffiffiffi
tc

p
. On the side

a1;↑↑ > 0 the interaction is stronger but is not conservative
due to the recombination to dimer states of size ∼a1;↑↑ [40].
We now raise a few questions for future studies. Our

intuition built on two-body interacting BECs may have to
be reconsidered when three-body forces become important;
fragmented condensation, rotonization, or (super)solidity
of a three-body interacting gas with or without dipolar tails
can not be a priori ruled out. Starting from the dilute
droplet for g2 < 0 and g3 > 0 [7] and further increasing the
two-body attraction, will the system just shrink or even-
tually form a paired state? What is the interaction between
pairs? In two dimensions, when g2 is small there are two
tetramers of exponentially large size [52], the local three-
body interaction being a small perturbation. On the other
hand, in the bilayer case with r� ≳ 1 and t ¼ 0 the dimers
are rather deeply bound and it is reasonable to assume that
they repel each other. If and how the two tetramer states go
into the dimer-dimer continuum with increasing jg2j
remains an interesting few-body problem [53]. Note that
with the presented method we can also independently
control the range of the three-body effective interaction,
which can be important, in particular, for quantum Hall
problems [17]. Finally, the bilayer setup can be considered
as a limiting case of a multilayer one in which the chemical
potentials of two layers are significantly lowered. One can
consider N layers with generally different chemical poten-
tials and thus try to engineer quite exotic effective few-body
interactions (for example, g2 ¼ g3 ¼ 0 and finite g4).
However, for N ≥ 3 one should also be aware of inelastic
three-body processes.
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