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We present a calculation of the complete set of QED corrections of order mα7 for one-electron two-
center systems. Leading corrections of order mα8 are also considered, which allows us to estimate the
magnitude of yet uncalculated contributions. The theoretical uncertainty on the frequencies of rovibrational
transitions in the hydrogen molecular ions Hþ

2 and HDþ, and of two-photon transition in antiprotonic
helium is reduced by about 1 order of magnitude, down to ð3–4Þ × 10−11 and 10−10, respectively. These
results open new perspectives for improved determination of the proton- and antiproton-to-electron mass
ratios by precision spectroscopy experiments.
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In recent years, high-precision spectroscopy of three-body
molecular or moleculelike systems has opened new possibil-
ities for metrology of nucleus-to-electron mass ratios
and/or tests of few-body bound-state QED [1]. One-photon
ro-vibrational transitions were observed in HDþ molecular
ions with a relative uncertainty of 1–2 ppb [2,3]. Spectroscopy
of two-photon transitions in antiprotonic heliumat the 2–5ppb
level yielded a new value of the antiproton-to-electron mass
ratio [4]. These experiments, as well as others [5,6], are
currently being developed towards higher precision. The
importance of the mp=me problem is supported by recent
experiments [7]with rubidiumatoms,whichallowus todeduce
a newvalue of the fine structure constant, α ¼ e2=ðℏcÞ, with a
relative uncertainty 6.6 × 10−10. Further improvement may be
hindered by the present limits on the proton-to-electron mass
ratio, which, according to the present CODATAadjustment [8]
is known with a relative uncertainty of 4.1 × 10−10.
Theoretical calculation of the complete set of QED

corrections up to order mα6 has brought the theoretical
uncertainty down to 0.3–0.4 ppb in Hþ

2 or HDþ [9], and
about 1 ppb in antiprotonic helium [10]. Very accurate
leading order relativistic corrections are also available from
[11]. In the present work, we compute the complete set of
mα7 order corrections including the one-loop self-energy
contribution, which represents the main source of theoretical
uncertainty. This allows us to improve the accuracy by about
one order of magnitude, thus making real the possibility of
improving the knowledge of nucleus-to-electron mass ratios.
The major part of this Letter concerns the one-loop self-

energyatmα7 order,which is themost difficult contribution to
evaluate. As a starting point of our consideration we take the
general result ofRefs. [12,13] for a bound electron in a field of
external Coulomb potential. Its derivation does not use the
exact form VðrÞ; thus, it is possible to extend it to a system
with two Coulomb centers. Significant work is involved for
two reasons. (i) The definition of the relativistic Bethe

logarithm in [12,13] uses the energy scale Z2Eh, which is
well suited for the hydrogenic case, but becomes irrelevant for
a system with two Coulomb centers of charges Z1 and Z2. It
has to be carefully redefined in atomic units. (ii) The result of
[12,13] is only valid for states with nonzero angular momen-
tum and for the normalized difference of S states,
Δn ¼ n3ΔEðnSÞ − ΔEð1SÞ. Some terms are actually
divergent for individual S states. First we need to determine
finite expectation values for the divergent operators. Then we
will use a comparison with the known result for the 1S
state of hydrogen [14,15] to obtain the missing part, which
appears as a contact term of the type πZ3δðrÞ, and may
be generalized to the two-center problem by using the
distribution

Vδ ¼ π½Z3
1δðr1Þ þ Z3

2δðr2Þ�: (1)

We begin with the low-energy part and the redefinition of
the relativistic Bethe logarithm LðZ; n; lÞ. Here we use
atomic units.
The relativistic Bethe logarithm is determined as an

integral over photon energy [16]

LðZ; n; lÞ ¼ 2

3

Z
Eh

0

kdkPð1Þ
α2
ðkÞ þ 2

3

Z
∞

Eh

kdkPð2Þ
α2
ðkÞ; (2)

where Eh is the Hartree energy. The quantities PðiÞ
α2
ðkÞ are

defined in Eq. (10).
The integrand is the function of energy and is a sum of

various contributions [12,16]:
(a) relativistic corrections to the wave function

Pð1Þ
rc ðkÞ ¼ 2hHBQðE0 −HÞ−1QpðE0 −H − kÞ−1pi

þ hpðE0 −H − kÞ−1ðHB − hHBiÞ
× ðE0 −H − kÞ−1pi; (3)
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(b) modification of the vertex interactions

Pð2Þ
rc ðkÞ¼

��
−p2pi−1

2
σij∇jV

�
ðE0−H−kÞ−1pi

�
; (4)

(c) nonrelativistic quadrupole contribution

PnqðkÞ ¼
3k2

8π

Z
S
dΩnðδij − ninjÞfhpiðn · rÞðE0 −H − kÞ−1

× ðn · rÞpii− hpiðn · rÞ2ðE0 −H − kÞ−1piig;
(5)

where k ¼ kn. The angular brackets denote averaging on
the nonrelativistic bound state wave function ψ0, E0, and
H ¼ p2=2þ V are, respectively, the nonrelativistic
energy of the state and the nonrelativistic Hamiltonian.
Here, Q is a projector operator on the subspace orthogo-
nal to ψ0.

The complete contribution is Pα2ðkÞ ¼ Pð1Þ
rc ðkÞþ

Pð2Þ
rc ðkÞ þ PnqðkÞ. Its asymptotic expansion for large

k may be written in operator form up to terms
of Oð1=k2Þ,

Pα2ðkÞ ¼ − 1

2
h∇2i þ 2

k
hðHB − hHBiÞðE0 −HÞ−1∇2i þ 4

5k
h∇4i − 1

2k
hð∇2VÞi þ

ffiffiffi
2

p

k3=2
πZ2hδðrÞi

− 3 ln k
k2

πZ3hδðrÞi þ 1

k2

�
5 ln 2þ 37

10

�
πZ3hδðrÞi þ 1

k2
hðHB − hHBiÞðE0 −HÞ−1ð∇2VÞifin

þ 1

k2
hð∇VÞ2ifin þ

11

80k2
hð∇4VÞifin þ

1

16k2
hHδ

soi þ…; (6)

where

HB ¼ −p4

8
þ π

2
ρþHso; Hso ¼

1

4
σij∇iVpj;

Hδ
so ¼ 2iσijpið∇2VÞpj; σij ¼ ½σiσj�=ð2iÞ ¼ ϵijkσk:

Expression (6) determines the analytic form for the 1=k2

term via finite mean values of the divergent operators (see
definitions below) and the term proportional to Z3hδðrÞi; its
derivation is similar to what was done in [17] for the 1=k3

term of the asymptotic expansion in the nonrelativistic
Bethe logarithm case. That is the main advance with
respect to the results obtained in [12,13], and is key for
the redefinition of the relativistic Bethe logarithm in atomic
units.
The finite expectation values, which appear in Eq. (6) are

defined as follows (4πρ ¼ ∇2V):

h½∇4V�ifin ¼ −16πZ2R − 32πZ3Q − 8E0hV2i þ 4hpV2pi
þ 2hpð4πρÞpi − 4E0h4πρi; (7a)

hð∇2VÞQðE−HÞ−1QHBifin
¼hH0ð1ÞQðE−HÞ−1QH0ð2Þiþ1

4
½4πZ2Rþ16πZ3Q

þ8E0hV2i−4E2
0hViþhHð1ÞihVi−8hHð2ÞihVi�: (7b)

Here, H0ð1Þ and H0ð2Þ are obtained from transformation
[18,19]

�
H0ð1Þ ¼ −ðE0 −H0ÞU1 −U1ðE0 −H0Þ þ ð∇2VÞ
H0ð2Þ ¼ −ðE0 −H0ÞU2 −U2ðE0 −H0Þ þHB

to eliminate the divergent part from the second order term
(U1 ¼ 2V and U2 ¼ − 1

4
V).

The functionals Q and R in (7) are defined as

Q ¼ lim
r0→0

��
1

4πr3

�
r0

þ ðln r0 þ γEÞhδðrÞi
�

(8)

R ¼ lim
r0→0

�
h 1

4πr4
i
r0
−
�
1

r0
hδðrÞi þ ðln r0 þ γEÞhδ0ðrÞi

	�
;

(9)

where

hϕ1jδ0ðrÞjϕ2i ¼
D
ϕ1




 r
r
∇δðrÞ




ϕ2

E

¼ −h∂rϕ1jδðrÞjϕ2i − hϕ1jδðrÞj∂rϕ2i;

and hir0 denotes integration outside a sphere of radius r0.
As is discussed in [12,16] we have to subtract the leading

terms of expansion (6)

Pð1Þ
α2
ðkÞ ¼ Pα2ðkÞ − Fα2 − Aα2

k
− Bα2

k3=2
(10a)

and

Pð2Þ
α2
ðkÞ ¼ Pα2ðkÞ − Fα2 − Aα2

k
− Bα2

k3=2
− Cα2 ln k

k2
−Dα2

k2
:

(10b)
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Constants F, A, B, C, and D are taken by evaluating
expectation values of operators appearing in the expansion
(6) for the nonrelativistic wave function of a particu-
lar state.
The previous definition [12] of the relativistic Bethe

logarithm LH assumes scaling to ðZαÞ ¼ 1, and thus it may
be expressed in atomic units as

LHðn; lÞ ¼ Z−6
�
2

3

Z
Z2Eh

0

kdkPð1Þ
α2
ðkÞþ 2

3

Z
∞

Z2Eh

kdkPð2Þ
α2
ðkÞ

	
:

(11)

Comparing (11) with (2) one gets a relation between two
definitions of the relativistic Bethe logarithm,

LðZ; n; lÞ ¼ Z6LHðn; lÞ þ
Z6

n3

�
ln2Z−2 þ lnZ−2

�
10

3
ln 2þ 37

15

�	
þ lnZ−2

�
2

3
hðHB − hHBiÞðE0 −HÞ−1ð∇2VÞifin

þ 2

3
hð∇VÞ2ifin þ

11

120
hð∇4VÞifin þ

1

24
hHδ

soi
	
: (12)

Now substituting this into expression (3.36) of Refs. [12,13] and comparing it with the result of [14,15] for the 1S state of
hydrogen, we immediately get the general expression for the one-loop self-energy correction in the mα7 order in atomic
units:

ΔEð7Þ
se ¼ α5

π

�
LðZ; n; lÞ þ

�
5

9
þ 2

3
ln

�
α−2
2

	�
hð∇2VÞQðE −HÞ−1QHBifin þ 2hHsoQðE −HÞ−1QHBi

þ
�

779

14400
þ 11

120
ln

�
α−2
2

	�
h∇4Vifin þ

�
23

576
þ 1

24
ln

�
α−2
2

	�
hHδ

soi þ
�
589

720
þ 2

3
ln

�
α−2
2

	�
hð∇VÞ2ifin

þ 3

80
hð∇2VÞp2ifin − 1

2
hp2Hsoi þ Z2

�
−ln2½α−2� þ

�
16

3
ln 2 − 1

4

	
ln½α−2� − 0.81971202ð1Þ

	
hπρi

�
: (13)

This formula is the main analytical result of this Letter; it is
quite general and may be extended to the case of the
external electric field of two (or more) Coulomb sources.
One may check that the above expression matches the
result of Erickson and Yennie for the logarithmic term for
an arbitrary nS state of the hydrogen atom [20].
For the case of the two-center Coulomb problem one

needs to replace the delta function in the last line of Eq. (13)
by the distribution of Eq. (1).

To present our results we will adopt a similar notation as
for hydrogenlike ions [21]:

ΔEð7Þ
se ¼ α5

π
hVδi½A62ln2½α−2� þ A61 ln½α−2� þ A60�; (14)

where A62 ¼ −1; expressions for A61 and A60 coefficients
are obtained from Eqs. (14).

A61ðRÞ ¼
�
2

3
hð∇2VÞQðE −HÞ−1QHBifin þ

11

120
h∇4Vifin þ

2

3
hð∇VÞ2ifin þ

�
16

3
ln 2 − 1

4

�
hVδi;

	
=hVδi

A60ðRÞ ¼
��

5

9
− 2

3
ln 2

�
hð∇2VÞQðE −HÞ−1QHBifin þ

�
779

14400
− 11

120
ln 2

�
h∇4Vifin

þ
�
589

720
− 2

3
ln 2

�
hð∇VÞ2ifin þ

3

80
h4πρp2ifin − 0.81971202ð1ÞhVδi þ LðRÞ

	
=hVδi: (15)

Here, R is the distance between the Coulomb centers. Since
we are interested in the spin-independent part of transition
frequency we have dropped out the terms from Eq. (13),
which correspond to the spin-orbit interaction. They will be
considered elsewhere.
The coefficients A61 and A60 now may be calculated by

averaging of the “effective” potentials over the vibrational

wave function for individual three body states.

In the case of the fundamental vibrational transition
ðv ¼ 0; L ¼ 0Þ → ðv ¼ 1; L ¼ 0Þ in Hþ

2 , the numerical
value of the self-energy contribution is

ΔEð7Þ
se ≈ 125� 2 kHz: (16)

The uncertainty here is primarily due to numerical inac-
curacy in the calculated data for the relativistic Bethe
logarithm [16].
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In addition to the one-loop self-energy correction, using
the results from [22] we computed several other contribu-
tions at orders mα7 and mα8, which are proportional to
jΨð0Þj2 [except the V60 term in (17)] and easy to evaluate.
In what follows, numerical values are the contributions to
the fundamental transition in Hþ

2 .
(i) The one-loop vacuum polarization

ΔEð7Þ
vp ¼ α5

π
½V61 lnðZαÞ−2 þ V60�hVδi ≈ 2.9 kHz: (17)

The coefficients in (17) are taken as follows: V61 ¼ − 2
15
,

[23], and V60 ¼ 4
15
½ln 2 − 1289

420
�, as for the hydrogen atom in

the 1S state [24]. For the nonlogarithmic contribution we
approximate the electron wave function ψeðreÞ ≈
N½ψ1sðr1Þ þ ψ1sðr2Þ� by a sum of two wave functions of
the hydrogen atom ground state at the Coulomb centers.
(ii) The Wichman-Kroll contribution [25]

ΔEð7Þ
WK ¼ α5

π
W60hVδi ≈ −0.1 kHz: (18)

Here, W60ðnSÞ ¼ 19
45
− ðπ2=27Þ.

(iii) The complete two-loop contribution [26]

ΔEð7Þ
two-loop ¼

α5

π
½B50�hZ2

1δðr1Þ þ Z2
2δðr2Þi ≈ 10.1 kHz:

(19)

Here, B50 ¼ −21.55447ð12Þ, this contribution is valid for a
bound electron in an arbitrary configuration of few point-
like Coulomb sources.
(iv) The three-loop contribution is already negligible.

For the hydrogen molecular ion fundamental transition it
gives [27]

ΔEð7Þ
three-loop ¼

α5

π2
½0.42�hZ1δðr1Þ þ Z2δðr2Þi ≈ −60 Hz:

(20)

The above is the complete set of contributions at mα7

order in the nonrecoil limit.
In the next order (mα8) we evaluate only the leading

ln3ðZαÞ−2 contribution. It represents the second order
perturbation with two one-loop self-energy operators
[mα2ðZαÞ6] [28]:

ΔEð8Þ
two-loop ¼

α6

π2

�
− 8

27

	
ln3ðZαÞ−2hVδi ≈ 1 kHz: (21)

Using its value we determine the theoretical uncertainty of
yet uncalculated terms in the mα8 order and higher.
Adding these results to previously calculated contribu-

tions [9,10], one obtains precise theoretical predictions
for the transition frequencies (see Tables I and II).
Nonrelativistic energies and leading order corrections were
obtained with the CODATA10 [8] recommended values. It
is necessary to note that we used improved calculations for
the leading order relativistic corrections (mα4) and updated
values for the Bethe logarithm [29], which were the major
source of inaccuracy in the leading order radiative correc-
tions (mα5). That allowed us to significantly reduce
numerical uncertainties in the contributions at these orders.
In the mα7 order the uncertainty on the contribution

stems from numerical uncertainty in calculation of the
relativistic Bethe logarithm [16]. The recoil terms at order
mα6ðm=MÞ are negligible.
The contribution from the finite charge distributions of

nuclei deserves special discussion. For the fundamental
transition in the Hþ

2 ion the CODATA10 uncertainty results
in 250 Hz uncertainty for the transition energy. If we use
instead the charge radius from the muonic hydrogen
measurements [30], the frequency will move by 3 kHz;
ro-vibrational spectroscopy of Hþ

2 is thus sensitive to the
discrepancy between determinations of the proton radius.
The CODATA10 uncertainty due to the deuteron rms
charge radius for the HDþ fundamental transition is
215 Hz and is so far negligible. In the antiprotonic helium
the value of the rms charge radius of the alpha particle is
taken from [31] and results in a frequency uncertainty of
7 kHz, while the corresponding uncertainty from the
antiproton rms charge radius is more than 1 order of
magnitude less, the antiproton-electron interaction being
repulsive.

TABLE I. Summary of contributions to the ðv ¼ 0; L ¼ 0Þ →
ðv0 ¼ 1; L0 ¼ 0Þ fundamental transition frequency of Hþ

2 and
HDþ molecular ions (in MHz).

Hþ
2 HDþ

ΔEnr 65 687 511.0714 57 349 439.9733
ΔEα4 1091.0397 958.1510
ΔEα5 −276.5450 −242.1263
ΔEα6 −1.9969 −1.7481
ΔEα7 0.138(2) 0.120(2)
ΔEα8 0.001(1) 0.001(1)
ΔEtot 65 688 323.708(2) 57 350 154.371(2)

TABLE II. Summary of contributions to the ð36; 34Þ →
ð34; 32Þ transition frequency of the 4Heþp̄ atom (in MHz).

ΔEnr 1 522 150 208.13
ΔEα4 −50 320.64
ΔEα5 7 070.28
ΔEα6 113.11
ΔEα7 −10.46ð20Þ
ΔEα8 −0.12ð12Þ
ΔEtotal 1 522 107 060.3(2)
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At present, most accurate experimental results are
available for the HDþ molecular ion and for the antipro-
tonic helium. In Table III we compare our theoretical results
with the best experimental ones. Agreement is excellent in
all cases except for the v ¼ 0 → v ¼ 1 transition in HDþ,
where the discrepancy is 2.6σexp.
In conclusion, we have completed the calculation of the

mα7 corrections and obtain new theoretical estimates of
experimentally relevant transition frequencies. The theo-
retical accuracy has been improved by about 1 order of
magnitude and has reached a level of 0.03 ppb (0.13 ppb) in
molecular hydrogen ions (antiprotonic helium). This is an
important milestone, since the achieved accuracy allows for
improved determination of the proton- and antiproton-to-
electron mass ratios [8].
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