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We present a calculation of the complete set of QED corrections of order ma’ for one-electron two-

center systems. Leading corrections of order ma®

are also considered, which allows us to estimate the

magnitude of yet uncalculated contributions. The theoretical uncertainty on the frequencies of rovibrational
transitions in the hydrogen molecular ions Hy and HD™, and of two-photon transition in antiprotonic
helium is reduced by about 1 order of magnitude, down to (3—4) x 107! and 107!, respectively. These
results open new perspectives for improved determination of the proton- and antiproton-to-electron mass

ratios by precision spectroscopy experiments.
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In recent years, high-precision spectroscopy of three-body
molecular or moleculelike systems has opened new possibil-
ities for metrology of nucleus-to-electron mass ratios
and/or tests of few-body bound-state QED [1]. One-photon
ro-vibrational transitions were observed in HD™ molecular
ions with a relative uncertainty of 1-2 ppb [2,3]. Spectroscopy
of two-photon transitions in antiprotonic helium at the 2-5 ppb
level yielded a new value of the antiproton-to-electron mass
ratio [4]. These experiments, as well as others [5,6], are
currently being developed towards higher precision. The
importance of the m,/m, problem is supported by recent
experiments [ 7] with rubidium atoms, which allow us to deduce
anew value of the fine structure constant, & = e>/ (fc), witha
relative uncertainty 6.6 x 10~'°. Further improvement may be
hindered by the present limits on the proton-to-electron mass
ratio, which, according to the present CODATA adjustment [8§]
is known with a relative uncertainty of 4.1 x 1071°,

Theoretical calculation of the complete set of QED
corrections up to order ma® has brought the theoretical
uncertainty down to 0.3-0.4 ppb in Hy or HD* [9], and
about 1 ppb in antiprotonic helium [10]. Very accurate
leading order relativistic corrections are also available from
[11]. In the present work, we compute the complete set of
ma’ order corrections including the one-loop self-energy
contribution, which represents the main source of theoretical
uncertainty. This allows us to improve the accuracy by about
one order of magnitude, thus making real the possibility of
improving the knowledge of nucleus-to-electron mass ratios.

The major part of this Letter concerns the one-loop self-
energy at ma’ order, which is the most difficult contribution to
evaluate. As a starting point of our consideration we take the
general result of Refs. [12,13] for abound electron in a field of
external Coulomb potential. Its derivation does not use the
exact form V/(r); thus, it is possible to extend it to a system
with two Coulomb centers. Significant work is involved for
two reasons. (i) The definition of the relativistic Bethe
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logarithm in [12,13] uses the energy scale Z>E,, which is
well suited for the hydrogenic case, but becomes irrelevant for
a system with two Coulomb centers of charges Z; and Z,. It
has to be carefully redefined in atomic units. (ii) The result of
[12,13] is only valid for states with nonzero angular momen-
tum and for the normalized difference of § states,
A, = n*AE(nS) — AE(1S). Some terms are actually
divergent for individual § states. First we need to determine
finite expectation values for the divergent operators. Then we
will use a comparison with the known result for the 1S
state of hydrogen [14,15] to obtain the missing part, which
appears as a contact term of the type zZ>§(r), and may
be generalized to the two-center problem by using the
distribution

Vs = n[Z36(ry) + Z35(xy)]. (1

We begin with the low-energy part and the redefinition of
the relativistic Bethe logarithm £(Z, n,[). Here we use
atomic units.

The relativistic Bethe logarithm is determined as an
integral over photon energy [16]

2 [E 2 [
L(Z.n0) =3 / hkdkPg?(ng / kakP% (k). (2)
0

Ey

where E), is the Hartree energy. The quantities sz) (k) are
defined in Eq. (10).

The integrand is the function of energy and is a sum of
various contributions [12,16]:

(a) relativistic corrections to the wave function

P (k) = 2(HzQ(Ey — H) ' Op(Ey — H — k)~'p)
+ (p(Ey —H — k)" (Hp — (Hp))
x (Eg—H —k)™'p); 3)
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(b) modification of the vertex interactions
1 )
PR (k)= < (—pzp’ —EG’JVJV) (Eo—H—k)‘lp’>; 4)

(c) nonrelativistic quadrupole contribution

where k = kn. The angular brackets denote averaging on
the nonrelativistic bound state wave function v, E,, and
H = p?/2+V are, respectively, the nonrelativistic
energy of the state and the nonrelativistic Hamiltonian.
Here, Q is a projector operator on the subspace orthogo-
nal to .

2
Py (k) = :;i/ dQu (87 — nin)){(p'(n-r)(Ey—H — k)™ The complete contribution is Py (k) = Pﬁé)(k)—i-
IS ' ' p? (k) + Pyg(k). Its asymptotic expansion for large
x (n-r)p) = (p'(n-r)*(Eo —H—k)"'p")}, k may be written in operator form up to terms
(5)  of O(1/k*),
|
1 2 B 4 1 V2
Pea(k) = =5 (V) + % (Hy = (Hy)(Bo — H)™'V2) o (V) = 2 (V2V) + 25 222 (3(r)
3Ink 1 37 1
22 00) + 5 (502.435) a2 00) + 5 (= () (B — H) TV g,
1 1 1
—((VV)? — (V) + 5 (HS) + ... 6
+ k2 <( ) >f1n + 80k2 <( )>f1n + 16](2 < 50> + ( )
|
where H') = —(Ey — Ho)U, — Uy (Eg — Ho) + (V2V)
H'®) = —(Ey — Hy)U, — Uy(Ey — Hy) + Hpp
4
Hy = _p + z p+H H. — 1 A to eliminate the divergent part from the second order term
8 2 SO SO 4 ’

H3, =2ic'p'(V2V)pl, o' = [0'0’]/(2i) = e'*ot.

Expression (6) determines the analytic form for the 1/k*
term via finite mean values of the divergent operators (see
definitions below) and the term proportional to Z*(5(r)); its
derivation is similar to what was done in [17] for the 1/k
term of the asymptotic expansion in the nonrelativistic
Bethe logarithm case. That is the main advance with
respect to the results obtained in [12,13], and is key for
the redefinition of the relativistic Bethe logarithm in atomic
units.

The finite expectation values, which appear in Eq. (6) are
defined as follows (4zp = V?V):

([V4V])g, = —162Z2R — 3272Z3Q — 8E,(V?) + 4(pV2p)
+2(p(4zp)p) — 4E(47p), (7a)

(V*V)Q(E—H)™' QHp)g,
=(H'VWQ(E—H)"'QH'?) +%[4n’ZZR—|— 1622°Q

+8E(V2) —4E§(V) + (HO)(V) —=8(H)(V)]. (Tb)

Here, H'() and H'® are obtained from transformation
[18,19]

(U =2V and U, = —iV).
The functionals Q and R in (7) are defined as

Q = lim { <4ﬂ%>m + (Inrg + 7E)<5(r)>} ®)

_ [rlo (8(r)) + (Inrg + yE)<5’(r)>} }
9)

where

(118 (6)1h2) = (1] V(1) b2
= — (041 16(6)\dh2) — (113(1)[0,6).

and (), denotes integration outside a sphere of radius 7.
As is discussed in [12,16] we have to subtract the leading
terms of expansion (6)

| Ap Bp
PR = Pa(k) = Fo =25 =157

(10a)
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2 [ZE 2
6|2 / " kdkPY (k) += / kakP%) (k)| .
3 Jo a 3 )2k,
(11)
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Constants F, A, B, C, and D are taken by evaluating
expectation values of operators appearing in the expansion
(6) for the nonrelativistic wave function of a particu-
lar state.

The previous definition [12] of the relativistic Bethe
logarithm £ assumes scaling to (Za) = 1, and thus it may
be expressed in atomic units as

ﬁH(n,l) =7

Comparing (11) with (2) one gets a relation between two
definitions of the relativistic Bethe logarithm,

z° 10 37
L(Z.n.1) =Z°Ly(n.1) +— {1“22‘%1112‘ <1 n2+

3 15)} +1InZ2 E((HB — (Hg))(Ey —H) ' (V*V)) i
TV + 2 (018

UJI[\)

(V) + (12)

Now substituting this into expression (3.36) of Refs. [12,13] and comparing it with the result of [14,15] for the 1S state of
hydrogen, we immediately get the general expression for the one-loop self-energy correction in the ma’ order in atomic

units:

5
AED =% {L(Z, n.l) + (g +3n

T

779 1 1
14400 120

80

This formula is the main analytical result of this Letter; it is
quite general and may be extended to the case of the
external electric field of two (or more) Coulomb sources.
One may check that the above expression matches the

el (B

o (VI = 3 ) + 22| -l + |

[ _2] ) (V2V)Q(E — H)™' QHp) g, + 2(H,0Q(E — H)™' OHy)

In {a;])m?o) + (% §1 [a_2D<(VV)2>ﬁn
Pin2 —i] Infa?] — 0.81971202(1)} (,Tp)},

3 (13)

To present our results we will adopt a similar notation as
for hydrogenlike ions [21]:

5

n_@ 27,2 -2
result of Erickson and Yennie for the logarithmic term for AEy’ = . (Vs)[AgIn[a™] + Ag Infa] + Ago],  (14)
an arbitrary nS state of the hydrogen atom [20].
For the case of the two-center Coulomb problem one  where Ag, = —1; expressions for Ag; and Ag coefficients
needs to replace the delta function in the last line of Eq. (13) are obtained from Egs. (14).
by the distribution of Eq. (1).
|
2, > —1 4y 16 1
Agi(R) = §<(V V)Q(E — H)"'QHp)g, + 120 <V Vi + <(VV) )fin T zn2-7 (Va), | /{Vs)
5 2 779 11
Aeo(R) = |z —=In2 ) ((V? E—H)"'QHp); —— ——1In2 | (V*V),
wlf) = | (33102 (PV)0(E - H) OH i + (14400 52 (Vi
589 2 N 3
+ m—gan (VV)*)gin + 0 (47pp?) gy — 0.81971202(1)(Vs) + L(R)|/ (V). (15)

Here, R is the distance between the Coulomb centers. Since
we are interested in the spin-independent part of transition
frequency we have dropped out the terms from Eq. (13),
which correspond to the spin-orbit interaction. They will be
considered elsewhere.

The coefficients Ag; and Agy now may be calculated by

averaging of the “effective” potentials over the vibrational
wave function for individual three body states.

[

In the case of the fundamental vibrational transition
(v=0,L=0)— (v=1,L=0) in HJ, the numerical
value of the self-energy contribution is

AEY) ~ 125 + 2 kHz. (16)

The uncertainty here is primarily due to numerical inac-
curacy in the calculated data for the relativistic Bethe
logarithm [16].
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TABLE I.  Summary of contributions to the (v =0,L =0) -
(v =1,L' =0) fundamental transition frequency of Hj and
HD+ molecular ions (in MHz).

HY HD*
AE,, 65687511.0714 57349 439.9733
AE, 1091.0397 958.1510
AE,; —276.5450 —242.1263
AE ~1.9969 ~1.7481
AE, 0.138(2) 0.120(2)
AEs 0.001(1) 0.001(1)
AE,, 65 638 323.708(2) 57350 154.371(2)

In addition to the one-loop self-energy correction, using
the results from [22] we computed several other contribu-
tions at orders ma’ and ma®, which are proportional to
|W(0)|? [except the Vi, term in (17)] and easy to evaluate.
In what follows, numerical values are the contributions to
the fundamental transition in Hj .

(i) The one-loop vacuum polarization

5
AEY) = “; [Vei In(Za)™2 + Vo (V) ~ 2.9 kHz.  (17)

The coefficients in (17) are taken as follows: Vg = —%,
[23], and Vy = 1% [In2 — 228 as for the hydrogen atom in

the 18 state [24]. For the nonlogarithmic contribution we

approximate the electron wave function w,(r,)~

N[y s(r;) + wi,(ry)] by a sum of two wave functions of

the hydrogen atom ground state at the Coulomb centers.
(i1) The Wichman-Kroll contribution [25]

5
AEY) = 0’; Weo(Vs) ~ —0.1 kHz. (18)

Here, We(nS) = 2 — (7/27).
(iii) The complete two-loop contribution [26]

AED @

two-loop T

[Bso]<Z%5(r1) —+ Z%5(l‘2)> ~ 101 kHz.
(19)

TABLE II. Summary of contributions to the (36,34) —
(34, 32) transition frequency of the *He* p atom (in MHz).

AE,, 1522150208.13
AE,, —50320.64

AE ;s 7070.28

AE 113.11

AE, —10.46(20)
AE —0.12(12)

AE 1522 107 060.3(2)

Here, Bsy = —21.55447(12), this contribution is valid for a
bound electron in an arbitrary configuration of few point-
like Coulomb sources.

(iv) The three-loop contribution is already negligible.
For the hydrogen molecular ion fundamental transition it
gives [27]

5
(04
AEE}Zr)ee—loop = ; [042] <Zl(3(rl) + 225(r2)> ~ —60 Hz.
(20)

The above is the complete set of contributions at ma’
order in the nonrecoil limit.

In the next order (ma®) we evaluate only the leading
In*(Za)=? contribution. It represents the second order
perturbation with two one-loop self-energy operators
[ma*(Za)®] [28]:

(16

AE® = [— —} In}(Za)2(Vy) ~ 1 kHz.  (21)

two-loop ﬂz

Using its value we determine the theoretical uncertainty of
yet uncalculated terms in the ma® order and higher.

Adding these results to previously calculated contribu-
tions [9,10], one obtains precise theoretical predictions
for the transition frequencies (see Tables I and II).
Nonrelativistic energies and leading order corrections were
obtained with the CODATA10 [8] recommended values. It
is necessary to note that we used improved calculations for
the leading order relativistic corrections (ma*) and updated
values for the Bethe logarithm [29], which were the major
source of inaccuracy in the leading order radiative correc-
tions (ma’). That allowed us to significantly reduce
numerical uncertainties in the contributions at these orders.

In the ma’ order the uncertainty on the contribution
stems from numerical uncertainty in calculation of the
relativistic Bethe logarithm [16]. The recoil terms at order
ma®(m/M) are negligible.

The contribution from the finite charge distributions of
nuclei deserves special discussion. For the fundamental
transition in the H; ion the CODATA 10 uncertainty results
in 250 Hz uncertainty for the transition energy. If we use
instead the charge radius from the muonic hydrogen
measurements [30], the frequency will move by 3 kHz;
ro-vibrational spectroscopy of Hj is thus sensitive to the
discrepancy between determinations of the proton radius.
The CODATAI10 uncertainty due to the deuteron rms
charge radius for the HD™ fundamental transition is
215 Hz and is so far negligible. In the antiprotonic helium
the value of the rms charge radius of the alpha particle is
taken from [31] and results in a frequency uncertainty of
7 kHz, while the corresponding uncertainty from the
antiproton rms charge radius is more than 1 order of
magnitude less, the antiproton-electron interaction being
repulsive.
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TABLE III. Comparison with most accurate experimental
measurements of transition frequencies for HD" and
antiprotonic helium (in MHz).

Experiment Theory

[2] 214 978 560.6(5)
3] 58 605 052.00(6)

214978 560.948(8)
58 605 052.156(2)

) 1522107 062(4)

2 1522107 060.3(2)
0) 2145054 858(5)

2145054 858.1(2)

At present, most accurate experimental results are
available for the HD" molecular ion and for the antipro-
tonic helium. In Table III we compare our theoretical results
with the best experimental ones. Agreement is excellent in
all cases except for the v = 0 — v = 1 transition in HD™,
where the discrepancy is 2.66.y,.

In conclusion, we have completed the calculation of the
ma’ corrections and obtain new theoretical estimates of
experimentally relevant transition frequencies. The theo-
retical accuracy has been improved by about 1 order of
magnitude and has reached a level of 0.03 ppb (0.13 ppb) in
molecular hydrogen ions (antiprotonic helium). This is an
important milestone, since the achieved accuracy allows for
improved determination of the proton- and antiproton-to-
electron mass ratios [8].
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