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We study the Anderson-type transition previously found in the spectrum of the QCD quark Dirac
operator in the high-temperature, quark-gluon plasma phase. Using finite size scaling for the unfolded level
spacing distribution, we show that in the thermodynamic limit there is a genuine mobility edge, where the
spectral statistics changes from Poisson to Wigner-Dyson statistics in a nonanalytic way. We determine the
correlation length critical exponent ν and find that it is compatible with that of the unitary Anderson model.
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The idea of Anderson localization is more than half a
century old [1]. Anderson localization is the spatial
localization of the states of a system due to quantum
interference effects, caused by the presence of disorder.
Its simplest realization is provided by the Anderson tight-
binding model that aims at describing electronic states in a
“dirty” conductor by mimicking the effect of impurities
through a random on-site potential. In three dimensions,
as soon as the random potential is switched on, localized
states appear at the band edge. However, states remain
extended around the band center, beyond a critical energy
called the “mobility edge.” Increasing the amount of
disorder, i.e., increasing the width of the distribution of
the random potential, the mobility edge moves towards the
band center, and above a certain critical disorder all the
states become localized (see Refs. [2,3]).
Originally proposed to explain the loss of zero temper-

ature conductance as a result of disorder, localization was
later found in a much wider range of physical systems.
Anderson transitions have been demonstrated with electro-
magnetic and sound waves as well as cold atoms (see
Ref. [4] and references therein) and recently in strongly
interacting matter in its high-temperature quark-gluon
plasma phase [5]. The last item of the list is rather peculiar
since in that case localization occurs on a vastly different
length and energy scale from all previously known cases,
namely, on subnuclear rather than atomic scales.
In the microscopic description of strongly interacting

matter provided by quantum chromodynamics (QCD), a
central role is played by the Dirac operator. Its spectrum
encodes important properties of quarks and hadrons. At low
temperature, the lowest-lying quark eigenmodes of the Dirac
operator have long been known to be extended and the
corresponding spectrum to obey Wigner-Dyson statistics as
predicted by randommatrix theory (RMT) [6]. This has been
successfully exploited to study the low-energy properties of
QCD [6]. In contrast, in the high-temperature quark-gluon
plasma phase no similar description of the low-lying quark
modes was available until recently. It was first suggested by
García-García and Osborn that the transition from the

hadronic to the quark-gluon plasma phase might be an
Anderson-type transition [7]. Using lattice QCD they
qualitatively demonstrated that heating the system through
the critical temperature makes the quark states more local-
ized. However, at that time a detailed verification of an
Anderson transition in QCD was not possible.
More recently, using lattice simulations at a fixed temper-

ature well above the crossover temperature Tc, we explicitly
verified the existence of an Anderson-type transition in the
spectrum of the quark Dirac operator. We found that while
the lowest part of the spectrum consists of localized states
that obey Poisson statistics, higher up in the spectrum the
states become delocalized and the level spacings are
described by Wigner-Dyson random matrix statistics [5].
The scaling of the mobility edge, separating localized and
delocalized states, indicates that it survives in the continuum
limit and it steeply increases with the temperature. Thus, the
temperature in QCD plays a role similar to the disorder
strength in the Anderson model. We also demonstrated that
in larger volumes the transition becomes sharper, suggesting
that it is a real phase transition.
In this Letter, we present a finite size scaling study of the

transition and show explicitly that it is a genuine second-
order phase transition. We also compute the correlation
length critical exponent ν and find that it is compatible with
that of the three-dimensional Anderson model in the unitary
class, the class to which quarks in the fundamental
representation of the SU(3) gauge group are also expected
to belong. Our results suggest that the universality of the
Anderson transition might be much more general than
previously thought. So far, universality in the Anderson
model had been checked for different distributions of the
diagonal disorder (see e.g., Ref. [8]) and for uncorrelated
off-diagonal disorder [9]. The model we consider here,
lattice QCD, is very different from all previously consid-
ered cases. Here, the disorder appears through the gauge
fields in the hopping terms, while the on-site terms are
identically zero. Moreover, the random fluctuations of the
disorder at different locations are not independent.
However, since the theory has a mass gap, correlations
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among them decay exponentially with the distance. It is
also remarkable that in QCD the transition is not driven by
the disorder strength but by the temperature. In lattice
QCD, the temperature is set by the extension of the system
in Euclidean time, as T ¼ 1=Lt, where Lt is the temporal
size. As the system is heated and Lt becomes smaller,
the lowest-lying quark modes are squeezed not only in the
temporal but also in the spatial directions. This results in the
localization of the lowest quark modes, up to the mobility
edge, which in turn is pushed to higher values as the system
is further heated. For a possible physical explanation of this
mechanism in terms of the antiperiodic temporal quark
boundary condition and fluctuations of the Polyakov loop,
see Ref. [10].
More precisely, the model we consider here is lattice QCD

at finite temperature, with 2þ 1 flavors of staggered quarks
with the quark masses tuned to the physical u, d, and s quark
masses. Here, QCD is discretized on a 3þ 1 dimensional
hypercubic lattice with three spatial and one Euclidean
temporal dimension with the temporal size setting the
physical temperature of the system. For details of the
particular action and parameters we use, see Refs. [11]
and [5]. The staggered Dirac operator is a simple lattice
discretization of the continuum Dirac operator containing
covariant derivatives with the SU(3) color gauge field.
Technically, the staggered Dirac operator is, thus, a large
sparse matrix with all zeros in the diagonal (on-site terms)
and nonzero elements only in the nearest-neighbor hopping
terms. Being a discretized covariant derivative, each hopping
term depends on the SU(3) group valued gauge field
attached to the given link (parallel transporter). The gauge
links, in turn, are random variables generated with the full
QCD path integral measure (see e.g., Ref. [12]).
The spectrum of the staggered Dirac operator on a finite

lattice is a discrete set of pairs of purely imaginary
eigenvalues �iλn. Here and in the following, λ denotes
the eigenvalues in lattice units. For our purposes, it is
enough to restrict to the positive part of the spectrum
λn ≥ 0. At temperatures above Tc, the lowest-lying eigenm-
odes of the Dirac operator are localized on the scale of the
inverse temperature, whereas higher up in the spectrum
they are delocalized. For the present study, we use a fixed
temperature of T ≃ 2.6Tc, corresponding to temporal
extension Lt ¼ 4 in lattice units and lattice spacing
a ¼ 0.125 fm. The temporal size of the system is thus
fixed, and we vary only its size in the three spatial
dimensions, using linear extensions of L ¼ 24, 28, 32,
36, 40, 44, 48, 56 (in lattice units). Our results are based on
a rather high statistics for present day lattice QCD stan-
dards, consisting of 40 k independent configurations on the
smallest lattice; on the larger lattices the number of
configurations was scaled down with the volume to have
the same eigenvalue statistics.
A convenient way to investigate the transition from

localized to delocalized modes is to study the local

statistical properties of the spectrum, which are expected
to show a change from Poisson to RMT behavior across an
Anderson transition. In this respect, a possible quantity to
consider is the so-called unfolded level spacing distribution
(ULSD), which is known analytically for both kinds of
statistics. Unfolding is a local rescaling of the eigenvalues
to have unit spectral density throughout the spectrum. The
ULSD gives the probability distribution of the difference
between two consecutive eigenvalues of the Dirac operator
normalized by the local average level spacing. In the
thermodynamic limit, the critical point (mobility edge)
in the spectrum λc ¼ λcðTÞ, separating localized and
delocalized modes, is identified as the point where the
local ULSD PλðsÞ switches between Poisson and Wigner-
Dyson statistics.
Any quantity extracted from the local ULSD, having

different values for Poisson and RMT statistics, can be used
to detect the transition and to study the corresponding
critical behavior, along the lines of Refs. [13–15]. Denoting
by Qðλ; LÞ such a quantity, computed on a lattice of linear
size L, one expects for its thermodynamic limit QðλÞ ¼
limL→∞Qðλ; LÞ the following behavior: QðλÞ ¼ QPoisson
for λ < λc; QðλcÞ ¼ Qc, and QðλÞ ¼ QRMT for λ > λc. In a
second-order phase transition such as the Anderson tran-
sition, the characteristic length of the system ξ∞ diverges at
the critical-point as ξ∞ðλÞ ∼ jλ − λcj−ν. Close to λc and in
large enough volumes so that corrections to one-parameter
scaling can be ignored, finite size scaling suggests that the
dependence of Q on L is of the form Qðλ; LÞ ¼
fðL=ξ∞ðλÞÞ. As Qðλ; LÞ is analytic in λ for any finite L,
we must have Qðλ; LÞ ¼ FðL1=νðλ − λcÞÞ, with F analytic.
This means that the data for different volumes, when
plotted against the scaling variable L1=νðλ − λcÞ, should
collapse on a single scaling curve F.
The parameters λc and ν can be obtained by optimizing

data collapse for a set of volumes in the following way.
Expanding the scaling function F in powers of λ − λc,

Qðλ; LÞ ¼
X∞

n¼0

FnLn=νðλ − λcÞn; (1)

FIG. 1 (color online). Integrated ULSD as a function of λ for
several lattice sizes. Here, 103Δλ ¼ 3.
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one can truncate the series to an order nmax, high enough to
give a good description of the scaling function in a range of
width w around λc. We can then fit the coefficients of the
polynomial and the parameters λc and ν to the data on a
set of volumes. The goodness of the fits measures how
precisely data collapse occurs. For the fit we used the
MINUIT library [16] and determined statistical errors by
means of a jackknife analysis.
For our purposes, the best choice for Q turned out to be

the integrated ULSD, defined locally in the spectrum,
Iλ ¼

R s0
0 dsPλðsÞ. Here, s0 ≃ 0.508 was chosen in order

to maximize the difference between the values predicted by
Poisson and RMT statistics, namely, IPoisson ≃ 0.398 and
IRMT ≃ 0.117. In practice, Iλ was computed by dividing the
full spectrum in bins of width Δλ, integrating the ULSD in
each bin, and assigning the resulting value to the average
value of λ in each bin. In Fig. 1, we show this quantity as a
function of λ for several system sizes.
The quality of the fit reflects the goodness of the data

collapse only if the truncation of Eq. (1) can provide a good
description of the scaling function in the required range.

To check this, we included more and more terms in the
series and monitored the stability of the results. In order to
circumvent the numerical instability of polynomial fits of
large order, we resorted to the technique of constrained
fits [17]. The basic idea of constrained fits is to use the
available information to constrain the values of the fitting
parameters. In our case, they are needed only to avoid
redundancy in the fitting parameters and the resulting
instability of the fits. We did not impose any constraint
on λc, ν, and Fn for n ≤ 3. Our constraints on the higher-
order coefficients were also very loose. In Fig. 2, we plot
the dependence of ν and its uncertainty on the order of the
truncation used for the fits. Both the value and the error
are absolutely stable for nmax ≥ 5, and in fact, even from
nmax ≥ 3 changes are within the uncertainties. After stabi-
lization, the resulting errors include both statistical effects
and systematic effects due to truncation [17]. In the
following, we use nmax ¼ 9.
In the Anderson model, irrelevant operators are known to

cause significant finite size corrections to one-parameter
scaling [18]. To see how important that is in the present
model, we performed the fits by omitting the smallest
volumes with system size L < Lmin. In Fig. 3, we show the
fitted value of ν as a function of the smallest volume
included in the fit (see also Table I). Initially, the resulting
value of ν increases with Lmin, but it stabilizes around
Lmin ¼ 36. A fit involving the leading irrelevant operator
and all the volumes gives consistent results with this,
indicating that finite volume corrections are under control.
The fitting procedure we described above also yields values
for the critical point λc. As a function of Lmin, the fitted
value of λc shows no systematic dependence, and different
choices of Lmin give consistent values within the errors (see
Table I).
There are two more arbitrary choices that can, in

principle, affect the results. These are the bin size Δλ,
over which the statistics for the ULSD is collected, and the
width of the fitting range w, around λc. We checked how
these factors affect our results by varying the bin size and
the width of the fitting range, which we always kept
approximately centered at the critical point. We demon-
strate both of these effects in Fig. 4. The results show a
slight tendency of ν to decrease as Δλ is decreased, but

FIG. 2 (color online). The fitted value of ν and the correspond-
ing relative error versus the number of terms nmax, in the case of
Lmin ¼ 36, 103Δλ ¼ 1.5, and fitting range width 102w ¼ 2.8.

FIG. 3 (color online). Dependence of the fitted value of ν,
averaged over 2.6 ≤ 102w ≤ 3 and 1 ≤ 103Δλ ≤ 3, on Lmin. The
critical exponents measured for the orthogonal (O) [18], unitary
(U) [19], and symplectic (S) [20] Anderson models and the
corresponding error bands are also shown for comparison.

TABLE I. Fitted values of ν, λc, and the integrated ULSD Iλ at
criticality and corresponding errors as a function of Lmin.

Lmin ν λc Iλ¼λc

24 1.371(30) 0.33637(13) 0.19429(72)
28 1.394(29) 0.33633(16) 0.19451(97)
32 1.405(44) 0.33626(18) 0.1950(11)
36 1.434(52) 0.33637(24) 0.1943(16)
40 1.435(59) 0.33604(35) 0.1966(25)
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it is rather stable for 103Δλ≲ 3. There is also a slight
tendency of ν to increase asw is decreased, becoming rather
stable for 102w≲ 3. To quote a single value for ν, we
averaged the central values obtained for 1 ≤ 103Δλ ≤ 3
and 2.6 ≤ 102w ≤ 3. As the error is also rather stable
within these ranges, its average gives a good estimate of
the typical error, which we quote as the final error on ν for
each choice of Lmin. We have checked that other

prescriptions (e.g., extrapolating to vanishing w and/or
Δλ or changing reasonably the ranges of w and Δλ over
which the final average is performed) give consistent
results within the errors.
The fitting procedure described above also yields a

polynomial parametrization of the scaling function in the
fitting range. To illustrate this, in Fig. 5 we show the scaling
function together with the data for the range of system sizes
used for the fit. Indeed, data from different volumes
collapse on a single scaling curve.
Our final result for the critical exponent, ν ¼ 1.43ð6Þ, is

compatible with νU ¼ 1.43ð4Þ found earlier for the three-
dimensional unitary Anderson model [19]. This strongly
suggests that the transition in the spectrum of the Dirac
operator above Tc is a true Anderson-type phase transition,
belonging to the universality class of the corresponding
three-dimensional Anderson model. Although its full
physical implications are not yet clear, localization might
explain the large hadron screening masses above Tc and
might have some implications for QCD-like theories that
do have a finite temperature chiral and deconfining phase
transition.
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