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Within the framework of a high-twist approach, we calculate the next-to-leading order (NLO)
perturbative QCD corrections to the transverse momentum broadening in semi-inclusive hadron production
in deeply inelastic eþ A collisions, as well as lepton pair production in pþ A collisions. With explicit
calculations of both real and virtual contributions, we verify, for the first time, the factorization theorem at
twist 4 in NLO for the nuclear-enhanced transverse momentum weighted differential cross section and
demonstrate the universality of the associated twist-4 quark-gluon correlation function. We also identify the
QCD evolution equation for the twist-4 quark-gluon correlation function in a large nucleus, which can be
solved to determine the scale dependence of the jet transport parameter in the study of jet quenching.
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Multiple scatterings of energetic partons inside cold or
hot nuclear matter play an important role in the study of the
QCD medium in high-energy lepton-nucleus, hadron-
nucleus, and nucleus-nucleus collisions. They lead to
parton energy loss and transverse momentum broadening
[1–4] that are responsible for the observed jet quenching
phenomena in semi-inclusive deeply inelastic scattering
(SIDIS) [5] and high-energy heavy-ion collisions [6].
Though there has been significant progress in the study
of parton energy loss [7,8], radiative correction to trans-
verse momentum broadening [9], and efforts to include the
effect of multiple gluon emission [10–12], the main
theoretical uncertainty in current jet quenching studies
arises from the logarithmic dependence on the kinematic
cutoff in the leading-order (LO) calculation of parton
energy loss [13] and the lack of a proof of factorization
of hard scattering and the medium properties. A complete
next-to-leading order (NLO) calculation of parton energy
loss and an analysis of factorization at NLO are essential for
future quantitative understanding of ever more precise data
on jet quenching from high-energy SIDIS and heavy-ion
collision experiments.
One of the approaches to parton energy loss [14,15] and

transverse momentum broadening [16–22] is based on
high-twist formalism that assumes collinear factorization
[23–25]. Within such an approach, one carries out collinear
expansion of hard parts of multiple scattering amplitudes
and reorganizes the final results in terms of power correc-
tions. Dominant contributions often depend on high-twist
matrix elements of the nuclear state that are enhanced by
the nuclear size. So far, most studies have focused on

double parton scattering and proofs of factorization are
only limited to LO analyses [24].
In this Letter, we will carry out, for the first time, a

complete NLO analysis of the twist-4 contributions to the
transverse momentum weighted cross section of SIDIS. In
particular, we consider contributions of quark rescattering
with partons from another nucleon inside the nucleus. Such
contributions are proportional to the nuclear size A1=3. For
large nucleus A ≫ 1, we neglect other A-independent
higher-twist contributions, for example, any twist-4 frag-
mentation correlation contributions that have no A1=3

enhancement [26]. We will calculate explicitly the real
and virtual corrections up to one-loop order to the twist-4
contributions. We verify the factorization theorem at twist 4
in NLO by demonstrating the cancellation of infrared
divergences and renormalization of the twist-4 parton
correlation functions. Our results not only provide a
complete NLO calculation of the transverse momentum
weighted cross section and, therefore, transverse momen-
tum broadening at twist 4, but also pave the way to the
proof of QCD factorization for higher-twist hard processes
and complete NLO calculation of jet quenching in medium.
In SIDIS of the hadron production off a large nucleus,

eðL1Þ þ AðpÞ → eðL2Þ þ hðlhÞ þ X; (1)

we consider the invariant mass of the virtual photon Q2 ¼
−q2 ¼ −ðL2 − L1Þ2 is large, where p is the average
momentum per nucleon in the nucleus with the atomic
number A and lh is the momentum of a final-state hadron
h. Higher-twist contributions to the cross section from
multiple scatterings are normally suppressed by powers of
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1=Q2. The coefficients, which are determined by high-twist
nuclear matrix elements, are, however, enhanced by the
nuclear size A1=3 [23]. The transverse momentum broad-
ening, Δhl2

hTi ¼ hl2
hTieA − hl2

hTiep, is defined as the
difference between the average squared transverse momen-
tum of the observed hadron produced on a nuclear target
and that on a proton target. Leading contributions in the
high-twist approach come from double scatterings,

Δhl2
hTi ≈

dhl2
hTσ

Di
dPS

. dσ
dPS

; (2)

where the phase space dPS ¼ dxBdydzh with xB ¼
Q2=ð2p · qÞ, y ¼ p · q=p · L1, and zh ¼ p · lh=p · q the
usual SIDIS variables [27]. The transverse momentum l2

hT-
weighted cross section from double scattering

dhl2
hTσ

Di
dPS

≡
Z

dl2
hTl

2
hT

dσD

dPSdl2
hT

; (3)

will be the focus of our NLO analysis in this Letter.
Double scattering contributions manifest themselves as

twist-4 power corrections to the differential cross section.
To derive these contributions, a generalized factorization
theorem, the so-called high-twist power expansion
approach, was developed some time ago [23]. It involves
the so-called collinear expansion, i.e., expand the hard
scattering contribution around the vanishing parton trans-
verse momentum as in Fig. 1. At leading order, the
contribution is given by Fig. 1(a). Within such a high-
twist approach, a straightforward calculation leads to a
simple LO result,

dhl2
hTσ

Di
dPS

¼ σh
X
q

e2q

Z
dz
z
Dh=qðzÞ

Z
dx
x
Tqgðx; 0; 0Þ

× δð1 − x̂Þδð1 − ẑÞ; (4)

where x̂ ¼ xB=x, ẑ ¼ p · l=p · q ¼ zh=z with l the
momentum of the final state quark, and σh ¼
ð4π2αsz2h=NcÞσ0 with σ0 given by

σ0 ¼
2πα2em
Q2

1þ ð1 − yÞ2
y

ð1 − ϵÞ; (5)

where ϵ is introduced since n ¼ 4 − 2ϵ dimensions will be
used for dimensional regularization in NLO calculations.
The twist-4 quark-gluon correlation function is defined as
[14,21,28]

Tqgðx1; x2; x3Þ ¼
Z

dy−
2π

eix1p
þy−

Z
dy−1 dy−2

4π

× eix2p
þðy−

1
−y−

2
Þeix3pþy−

2 θðy−2 Þθðy−1 − y−Þ
× hAjψ̄qð0ÞγþFþ

σ ðy−2 ÞFσþðy−1 Þψqðy−ÞjAi;
(6)

which contains the fundamental properties of the nuclear
medium as probed by a propagating quark and can be extracted
from experimental data, such as the transverse momentum
broadening in SIDIS and Drell-Yan processes [16,17].
For the purpose of a NLO analysis of the l2

hT-weighted
differential cross section dhl2

hTσ
Di=dPS, one needs to

evaluate both virtual and radiative corrections to the LO
process. Some example diagrams are shown in Figs. 1(b)
and 1(c) for virtual and real corrections, respectively.
Calculations of contributions from these diagrams involve
a significant amount of tensor reduction and integration.
However, the final results have some simple structures that
contain both infrared and collinear divergences.
The final NLO virtual correction to the l2

hT-weighted
cross section at twist 4 is given by the LO result as in
Eq. (4), multiplying by the following factor:

αs
2π

CF

�
4πμ2

Q2

�
ϵ 1

Γð1 − ϵÞ
�
− 2

ϵ2
− 3

ϵ
− 8

�
; (7)

where μ comes from the replacement g → gμϵ in n ¼
4 − 2ϵ dimensions. A similar structure also appears in the
virtual correction to the transverse momentum weighted
spin-dependent cross section at twist 3 [27,29].

(a)

(b)

(c)

FIG. 1. Sample Feynman diagrams for double scattering con-
tributions to the l2

hT -weighted differential cross section from
(a) leading-order (b) NLO virtual, and (c) NLO real processes.
The gluon momenta involved in the double scattering are kg ¼
x2pþ kT and kg0 ¼ ðx2 − x3Þpþ kT .
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To calculate radiative corrections to the l2
hT-weighted

cross section, we follow established techniques for contour
integration and collinear expansion [14,30]. We take the
central-cut diagram in Fig. 1(c) as an example, in which
the quark radiates one gluon between its interaction with
the virtual photon and one additional scattering inside the
nucleus. The quark and radiated gluon will eventually
fragment into final observed hadrons.
The on-shell condition for the radiated gluon leads to

a δ function δðx1 þ x2 − x − xcÞ and, thus, fixes
x1 ¼ xþ xc − x2, with x ¼ ðQ2 þ 2q · lÞ=2p · ðq − lÞ
and xc ¼ ðk2T − 2kT · lÞ=2p · ðq − lÞ. The remaining two
momentum fractions x2 and x3 are eliminated via contour
integrations which set one of the two quark propagators on
each side of the cut line on their mass shells. When the
quark propagator immediately after the quark-photon
interaction is on its mass shell, the gluon radiation is
induced by the secondary quark-nucleus scattering where
the exchanged gluon momentum (kg or kg0) remains finite
in the collinear limit kT → 0. Thus, this is referred to as a
hard scattering. On the other hand, if the quark propagator
close to the quark-photon vertex remains off shell, it
becomes on shell after radiating a gluon. Since the
exchanged gluon momentum becomes zero when kT →
0 in this case, it is called a soft scattering. The final result of
this cut diagram contains soft, hard contributions and their
interferences, often referred to as soft-soft, hard-hard, soft-
hard, and hard-soft contributions. Besides similar central
cut diagrams shown in Fig. 1(c), we also need to include
asymmetrical-cut diagrams which represent interferences
between single and triple scattering.
There are, in total, 57 diagrams for soft-soft, hard-hard,

and the interferences between soft and hard rescatterings in
quark-gluon double scatterings. All these processes contain
both soft-collinear and collinear divergences, which can be
identified in dimensional regularization as double-pole
1=ϵ2 and single-pole 1=ϵ type divergences, respectively.
In addition to the photonþ quark channel, we also consider
the photon+gluon channel in NLO processes at twist 4 that
has only soft-soft contributions and contains only the 1=ϵ
type collinear divergences. It involves the gluon-gluon
correlation function [30],

Tggðx1; x2; x3Þ ¼
1

xpþ

Z
dy−
2π

eix1p
þy−

Z
dy−1 dy−2

2π

× eix2p
þðy−

1
−y−

2
Þeix3pþy−

2 θðy−2 Þθðy−1 − y−Þ
× hAjFþ

α ð0ÞFσþðy−2 ÞFþ
σ ðy−1 ÞFþαðy−ÞjAi:

(8)

Combining real and virtual corrections, we find that the
double-pole 1=ϵ2 terms cancel out as required by QCD
factorization, and the final result with only the 1=ϵ terms
from collinear divergences can be written as

dhl2
hTσ

Di
dPS

¼ σh
αs
2π

X
q

e2q

Z
dz
z
Dh=qðzÞ

Z
dx
x

�
−1

ϵ̂
þ ln

Q2

μ2f

�

× ½δð1− x̂ÞPqqðẑÞTqgðx;0;0Þþ δð1− ẑÞ
×ðPqg→qg ⊗ TqgþPqgðx̂ÞTggðx;0;0ÞÞ�þ � � � ;

(9)

where 1=ϵ̂ ¼ 1=ϵ − γE þ lnð4πμ2=μ2fÞ, and μf is the fac-
torization scale in the MS subtraction scheme that we use.
Here, and in the rest of this Letter, we only write explicitly
the divergent pieces, and the finite contributions denoted by
“� � �” will be published elsewhere [31]. Pqqðx̂Þ and Pqgðx̂Þ
are the usual quark-to-quark and gluon-to-quark splitting
kernels in the leading-twist DGLAP evolution equations,
and the term Pqg→qg ⊗ Tqg is defined as

Z
dx
x
Pqg→qg ⊗ Tqg ≡

Z
dx
x
Pqqðx̂ÞTqgðx; 0; 0Þ

þ CA

2

�
4

ð1 − x̂Þþ
TqgðxB; x − xB; 0Þ

− 1þ x̂
ð1 − x̂Þþ

ðTqgðx; 0; xB − xÞ

þ TqgðxB; x − xB; x − xBÞÞ
�
: (10)

According to the analysis of induced gluon spectra in
Refs. [14,15], the interference between soft and hard
contributions corresponds to Landau-Pomeranchuk-Migdal
interference which suppresses gluon radiation with large
formation time tf ¼ 1=ðx − xBÞpþ > RA. In this region,
the value of the above integrand is, indeed, suppressed
by ∼x − xB < 1=ðpþRAÞ.
Following the strategy of collinear factorization pro-

cedure, we isolate and absorb the collinear divergences into
the renormalization of corresponding nonperturbative func-
tions. The first [∝ δð1 − x̂Þ] collinear divergence from
final-state gluon radiation in Eq. (9) can be absorbed into
the renormalized quark fragmentation function which
satisfies the usual DGLAP evolution equations [32]. The
second [∝ δð1 − ẑÞ] collinear divergence from initial-state
radiation can be absorbed into the renormalized quark-
gluon correlation function

TqgðxB;0;0;μ2fÞ ¼ TqgðxB;0;0Þ− αs
2π

1

ϵ̂

Z
1

xB

dx
x

× ½Pqg→qg ⊗ Tqg þPqgðx̂ÞTggðx;0;0Þ�:
(11)

The above leads to a new QCD evolution equation for the
quark-gluon correlation function
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∂
∂ ln μ2f TqgðxB; 0; 0; μ2fÞ ¼

αs
2π

Z
1

xB

dx
x
½Pqg→qg ⊗ Tqg þ Pqgðx̂ÞTggðx; 0; 0; μ2fÞ�: (12)

Equation (12), as it stands, is not closed. It is a common
feature for higher-twist parton distributions [27,29]. Under
certain approximations for the functional form in xi¼1−3
of the two-parton correlation function, one could obtain
a solution to the above evolution equation [31]. In prin-
ciple, one could also derive an evolution equation for the

gluon-gluon correlation function Tgg, which will be pur-
sued in the future.
In terms of the renormalized quark fragmentation func-

tion and twist-4 quark-gluon correlation function, we can
express the NLO correction to the l2

hT-weighted differential
cross section as

dhl2
hTσ

Di
dPS

¼NLO σh
αs
2π

X
q

e2q

Z
1

zh

dz
z
Dh=qðz; μ2fÞ

Z
1

xB

dx
x

�
ln

�
Q2

μ2f

�
½δð1 − x̂ÞPqqðẑÞTqgðx; 0; 0; μ2fÞ

þ δð1 − ẑÞðPqg→qg ⊗ Tqg þ Pqgðx̂ÞTggðx; 0; 0; μ2fÞÞ� þHNLO
q ðx̂; ẑÞ ⊗ Tqg þHNLO

g ðx̂; ẑÞ ⊗ Tgg

�
; (13)

where the last line in the equation comes from the finite
contribution from quark-gluon and gluon-gluon double
scatterings after subtraction of collinear divergences in
the MS scheme, and will be presented elsewhere [31].
So far, our results verify for the first time the factorization
of the l2

hT-weighted differential cross section at twist 4 in
NLO. The collinear divergences associated with the quark
fragmentation function and twist-4 quark-gluon correlation
function are factorized, and one is left only with finite hard
coefficient functions, which also depend on the factorization
scale. One should also consider contributions from double
quark scattering [33] and hadron production from gluon
fragmentation for more complete NLO calculations [31].
We have also verified the factorization for the transverse

momentum weighted differential cross section of Drell-Yan
lepton pair production in pþ A collisions at twist 4 in NLO
[31]. It contains the same twist-4 quark-gluon correlation
function which follows the same evolution equation as in
SIDIS in Eq. (12). This confirms, for the first time, the
collinear factorization for twist-4 observables at the NLO,
and demonstrates the universality of the associated twist-4
correlation functions. Therefore, the properties of nuclear
matter contained in the universal correlation functions as
probed by a propagating parton are independent of the hard
processes that create the fast partons.
Under the approximation of a large and loosely bound

nucleus, in which momentum and spatial correlations of
two nucleons can be neglected [28,30], one can express
TqgðxB; 0; 0; μ2fÞ in a factorized form [34],

TqgðxB; 0; 0; μ2fÞ ≈
Nc

4π2αs
fq=AðxB; μ2fÞ

Z
dy−q̂ðμ2f; y−Þ;

(14)

in terms of the quark distribution function fq=AðxB; μ2fÞ and
the jet transport parameter q̂ðμ2f; y−Þ. The new evolution

equation in Eq. (12) can then determine the scale depend-
ence of q̂ðμ2f; y−Þ. Such a scale dependence will have
important consequences on quantitative studies of jet
quenching at NLO.
In summary, we have demonstrated, for the first time, the

factorization of the nuclear-enhanced twist-4 contributions
to the transverse momentum weighted differential cross
section of SIDIS as well as Drell-Yan lepton pair production
in pþ A collisions in NLO within the high-twist formalism.
With explicit calculations, we have shown that the soft
divergences cancel out between real and virtual diagrams
while the collinear divergences can be absorbed into the
renormalized fragmentation (or parton distributions) func-
tions, as well as the twist-4 quark-gluon correlation function.
Our results demonstrate, for the first time, the universality of
such a twist-4 quark-gluon correlation function which
contains the properties of nuclear matter such as the jet
transport parameter as probed by a propagating parton in
different processes. We also derived a QCD evolution
equation for the twist-4 quark-gluon correlation function.
This will provide a framework to determine the QCD scale
dependence of the jet transport parameter. These complete
NLO corrections together with the scale dependence of the
twist-4 correlation functions, will provide more quantitative
descriptions of the transverse momentum broadening due to
multiple parton scattering in a nuclear medium, and pave the
way for the NLO calculation of jet quenching.
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