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We report on the experimental violation of multipartite Bell inequalities by entangled states of trapped
ions. First, we consider resource states for measurement-based quantum computation of between 3 and 7
ions and show that all strongly violate a Bell-type inequality for graph states, where the criterion for
violation is a sufficiently high fidelity. Second, we analyze Greenberger-Horne-Zeilinger states of up to 14
ions generated in a previous experiment using stronger Mermin-Klyshko inequalities, and show that in this
case the violation of local realism increases exponentially with system size. These experiments represent a
violation of multipartite Bell-type inequalities of deterministically prepared entangled states. In addition,
the detection loophole is closed.
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Introduction.—How strong can physical correlations be?
Bell inequalities set a bound on the possible strength of
nonlocal correlations that could be explained by a theory
based on some fundamental assumptions known as “local
realism.” Quantum mechanics predicts the existence of
states which violate Bell’s inequality, rendering a descrip-
tion of these states by a local hidden variable (LHV) model
impossible. While first discovered for bipartite systems
in a two-measurement setting [1], Bell inequalities have
been extended to multimeasurement settings and multipar-
tite systems, leading to a more profound violation for larger
systems of different kinds [2–6].
In particular, it was shown that all graph states violate

local realism, where the possible violation increases expo-
nentially with the number of qubits for certain types of
states [4–6]. Graph states [7,8] are a large class of multi-
qubit states that include a number of interesting, highly
entangled states, such as the 2D cluster states [9] or the
Greenberger-Horne-Zeilinger (GHZ) states. They serve as
resources for various tasks in quantum information process-
ing, including measurement-based quantum computation
(MBQC) [10,11] or quantum error correction [12]. The
results of Refs. [4,5] (see also [13]) provide an interesting
connection between the usability of states for quantum
information processing and the possibility to describe them
by a LHV model.
Here we experimentally demonstrate the violation of

multipartite Bell-type inequalities for graph states generated
with trapped ions. First, we consider a range of graph states
that find application inMBQCand observe strong violations
in all cases. Second, for a different class of graph states, we
investigate the scaling of the multipartite Bell violation
with system size and confirm an exponential increase: that
is, the quantum correlations in these systems become expo-
nentially stronger than allowed by any LHV model.

To be more precise, in the first part of our work, we
consider graph states that allow one to perform single-qubit
and two-qubit gates in MBQC, as well as resource states for
measurement-based quantum error correction [14]. That is,
we demonstrate that not only the code words of quantum
error correction codes violate local realism [13] but also the
resource states for encoding and decoding and other
computational tasks. In this part, we make use of general
Bell-type inequalities derived for all graph states in Ref. [4].
We show that the Bell observable simply corresponds to the
fidelity of the state; i.e., a violation is guaranteed by a
sufficiently high fidelity. This allows the many previous
experiments that quote fidelities to be reanalyzed to see if a
Bell violation has been achieved.
For the purpose of investigating the scaling of Bell

violations, we consider a subclass of graph states, for which
stronger inequalities are available [3,5,6], e.g., the Mermin-
Klyshko (MK) inequalities for N-qubit GHZ states [3]. We
show that these Mermin-Klyshko inequalities [3] are
violated by GHZ states from 2 to 14 qubits generated in
previous experiments [15]. In fact, we confirm an (expo-
nentially) increasing violation with system size.
Multipartite Bell violations for smaller system sizes

were previously obtained with photons [16]. Here, specific
4-photon states encoding up to 6 qubits were considered.
For trapped ions only two-qubit systems have previously
been shown to violate a Bell inequality [17]. Here, we deal
with larger systems and states with a clear operational
meaning in measurement-based quantum information
processing, where each qubit corresponds to a separate
particle. Finally, our detection efficiency is such that we
close the detection loophole.
Background.—Graph states jGi are defined via the

underlying graph G, which is a set of vertices V and
edges E; that is, G ¼ ðV; EÞ. One defines an operator
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Kj ¼ Xj
Q

i∈NðjÞZi for every vertex j, where X and Z
denote Pauli spin-1

2
operators. NðjÞ denotes the neighbor-

hood of vertex j and is given by all vertices connected to
vertex j by an edge. The graph state jGi is the unique
quantum state which fulfills KjjGi ¼ jGi for all j; i.e.,
it is the common þ1 eigenstate of all operators Kj. An
equivalent definition starts with associating a qubit in
state jþi ¼ 1=

ffiffiffi
2

p ðj0i þ j1iÞ with every vertex and apply-
ing a controlled phase (CZ) gate between every pair of
vertices connected by an edge, jGi ¼ UGjþi⊗n, with
UG ¼ Q

ðk;lÞ∈ECZðk;lÞ. Graph states have important appli-
cations in the context of measurement-based quantum
computation as resource states [10,11] and quantum error
correction [12].
In Ref. [4] it was shown that all graph states give rise to a

Bell inequality and that the graph state saturates it. Thus,
neither the correlations nor the quantum information
processing that exploits these correlations can be accounted
for by a LHV model. The inequality is constructed in the
following way. One aims at writing down an operator B
(specifying certain correlations in the system) such that the
expectation value for all LHV models is bounded by some
value D, while certain quantum states yield an expectation
value larger thanD. Let SðGÞ denote the stabilizer [18] of a
graph state jGi. It is the group of the products of the
operators Kj and is given by SðGÞ ¼ fsj; j ¼ 1; :::; 2ng,
with sj ¼

Q
i∈IjðGÞKi, where IjðGÞ denotes a subset of the

vertices of G. For the state corresponding to the empty
graph, the generators of the stabilizer group are given by
Kj ¼ Xj, and the stabilizer group is given by all possible
combinations of X and 1 on the different qubits. For n ¼ 2,
we have SðGÞ ¼ f1 ⊗ 1; X ⊗ 1; 1 ⊗ X;X ⊗ Xg. Notice
that for any nontrivial graph states (i.e., a graph state with a
nonempty edge set E), these operators are simply trans-
formed via UGKjU

†
G since jGi ¼ UGjþi⊗n, where

UGXjU
†
G ¼ Xj

Q
i∈NðjÞZi, i.e., the stabilizing operators of

the graph state specified above.
The normalized Bell operator is defined as BnðGÞ ¼

ð1=2nÞP2n

i¼1 siðGÞ, and we have hBnðGÞiρ ≤ 1 [where, in
quantum mechanics, hBnðGÞiρ ¼ Tr½BnðGÞρ� for density
matrix ρ]. LetDðGÞ ¼ maxLHVjhBnij, where the maximum
is taken over all LHV models. For any nontrivial graph
state, DðGÞ < 1 [4]. The maximization is generally hard to
perform, but has been explicitly carried out for graph states
with small n in Ref. [4]. The basic idea is to assign a fixed
value (“hidden variable”) þ1 or −1 to each Pauli operator
Xj, Yj, Zj and determine (numerically) the setting that
yields a maximum value of BnðGÞ. This then also provides
an upper bound on all LHV models. The corresponding
Bell inequality reads

hBnðGÞi ≤ DðGÞ; (1)

which is nontrivial whenever DðGÞ < 1. For the states
jLC4i, jBC4i, jEC1i one finds D ¼ 0.75 [4], while we

show in Ref. [19] that DðEC3Þ ≤ 0.75 and DðEC5Þ ≤
0.625 (see Fig. 1 for the different states). For fully
connected graphs corresponding (up to a local basis change)
to n-qubit GHZ states jGHZni ¼ ðj0i⊗n þ j1i⊗nÞ= ffiffiffi

2
p

, we
obtainDðGHZnÞ ¼ 1=2þ 2−n=2 for n ≤ 14 (see Ref. [19]).
Any graph state jGi fulfills hGjBnðGÞjGi ¼ 1, since

the state is a þ1 eigenstate of all operators appearing in
the sum that specifies BnðGÞ. Hence, it follows that the
graph state maximally violates the graph Bell inequality
[Eq. (1)], hGjBnðGÞjGi > DðGÞ.
A straightforward calculation shows that the normalized

Bell operator equals the projector onto the graph state:
BnðGÞ ¼ ð1=2nÞP2n

i¼1 si ¼ jGihGj. This can be seen
directly for the empty graph by noting that jþihþj ¼
ð 1þ XÞ=2, and writing out the product for jþihþj⊗n ¼Q

n
j¼1ð1j þ XjÞ=2, which yields all combinations of X

and 1. The result for a general graph state follows by
transforming each operator via UGXjU

†
G ¼ KG

j , together
with jGi ¼ UGjþi⊗n. Thus, the expectation value hBnðGÞi
equals the fidelity FðρGexp

Þ ¼ TrðρGexp
jGihGjÞ, where ρGexp

denotes the density matrix of the experimentally obtained
graph state. As it is common practice to report on the
fidelity, this provides a simple way of reinvestigating earlier
experiments.
In addition, this provides a possibility for measuring the

fidelity of a graph state by measuring the 2n stabilizers,
which add up to Bn. Although this method has the same
exponential scaling behavior as full state tomography, it
requires significantly fewer measurement settings.
Results: Graph states for MBQC.—The first group of

graph states that we consider are resources for MBQC and
are shown in Fig. 1. The four-qubit box cluster jBC4i
represents the smallest element of the 2 D cluster (family)
required to implement arbitrary quantum algorithms
[9–11]. The four-qubit linear cluster state jLC4i can be
used to demonstrate a universal quantum logic gate set
for MBQC [14,20]. The graph states jECni allow for the
demonstration of an n-qubit measurement-based quantum
error correction code [14].
Except for jBC4i, all of these states were generated in a

system of trapped ions and their application to MBQC was
demonstrated in our recent Letter [14]. In that work, and, in
particular, its accompanying Supplemental Material, one

FIG. 1 (color online). Graph states that find application in
measurement-based quantum computation. Red circles represent
qubits, connecting lines relate to the states’ generation method, as
described in the text. (a) Box graph jBC4i, (b) linear graph jLC4i.
Error correction graphs: (c) jEC1i, (d) jEC3i, (e) jEC5i.
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can find information on the experimental techniques used
to prepare the states. In summary, n qubits are encoded
into the electronic state of n 40Caþ ions held in a radio-
frequency linear Paul trap: each ion represents one qubit.
After preparing each qubit into the electronic and motional
ground state, graph states are generated deterministically
and on demand using laser pulses which apply qubit-state
dependent forces to the ion string. Additional details
relevant to Bell inequality measurements are now
described. The ions are typically 6 μm apart and it takes
approximately 500 μs to generate the states. Individual
qubits can be measured in any basis with near unit fidelity
in 5 ms. The state jBC4i belongs to the same family as the
error correction graphs, i.e., jBC4i ¼ jEC2i, and a state
equivalent to this (up to single qubit rotations [19]) was
generated using exactly the same methods as described
in Ref. [14].
For each n-qubit graph state shown in Fig. 1, we

experimentally estimate each of the 2n expectation values
hsiðGÞi that are required to estimate hBnðGÞi. If this final
number is larger than allowed by LHV models, then the
multipartite Bell inequality is violated. The experimental
uncertainty in each hsiðGÞi is the standard quantum
projection noise that arises from using a finite number
of repeated measurements to estimate an expectation value.
We note that the full density matrices for a subset of the

graph states shown in Fig. 1 were presented in Ref. [14]. We
do not extract the data from these matrices but directly
measure the 2n observables in each case. No previous
characterizationof the states jBC4i and jEC5ihas beendone.
The results are summarized in Table I and clearly show

that all experimentally generated states violate their graph
state inequalities by many tens of standard deviations.
Recall that hBnðGÞi is equal to the state fidelity. For
comparison, Table I also presents the state fidelity mea-
sured in another way— by reconstructing the density
matrix ρexp via full quantum state tomography and using
TrðjGihGjρexpÞ. This approach is much more measurement
intensive, requiring the estimation of 3n expectation values,
and was, therefore, not carried out for the seven-qubit state
jEC5i. The fidelities derived in these different ways are

seen to overlap to within 1 standard deviation. In the
Supplemental Material [19] we give an explicit example of
how the experimental value of hBnðGÞi for one graph state
(jBC4i) was derived.
Results: Scaling of violation with system size.—In the

second part of our work we are interested in investigating
the scaling of the violation of multipartite Bell inequalities
with the system size. Table I presents the relative violation
observed for the graph state inequalities, defined as the ratio
of the quantum mechanical expectation value of the Bell
observables and the maximal reachable value in a LHV
model [R ¼ hBnðGÞi=DðGÞ]. From this it is clear that,
while all the generated MBQC graph states violate their
inequalities, the size of the violation does not change
significantly with the size of the graph state. However,
there is another class of Bell inequalities, the Mermin-
Klyschko inequalities [3], for which the quantum mechani-
cal violation is predicted to increase exponentially with
qubit number. The MK inequalities apply to the GHZ states
jGHZni ¼ ðj0i⊗n þ j1i⊗nÞ= ffiffiffi

2
p

, which are (up to local
unitary operations) equivalent to graph states correspond-
ing to a fully connected graph (see Fig. 2).
The MK Bell operator [3] can be defined recursively by

Bk ¼
1

2
ffiffiffi
2

p Bk−1 ⊗ ðσak þ σa0kÞ þ
1

2
ffiffiffi
2

p B0
k−1 ⊗ ðσak − σa0kÞ

(2)

and starts with B1 ¼ σa1 [21]. The σak are given by scalar
products of three-dimensional unit vectors ak and the

TABLE I. Properties of experimentally generated graph states. Fidelity F ¼ Tr½½ρjψihψ j�� derived from the
tomographically reconstructed density state (ρ), where jψi is the ideal state. hBni is equivalent to the state fidelity,
derived from a subset of tomographic measurements. Values on the right-hand side of the inequality are the
maximum allowed by LHV models [DðGÞ, see Ref. [19]]. R ¼ Bn=D denotes the relative violation of the Bell
inequality. Errors are 1 standard deviation and derived from quantum projection noise.

Graph Qubits Fidelity (F) Multipartite Bell inequality hBni Relative violation R

LC4 4 0.841� 0.006 0.85� 0.02 > 0.75 1.13� 0.03
BC4 4 0.847� 0.007 0.86� 0.02 > 0.75 1.15� 0.03
EC1 3 0.920� 0.005 0.92� 0.02 > 0.75 1.23� 0.03
EC3 5 0.843� 0.005 0.86� 0.01 > 0.75 ≥ 1.15� 0.01
EC5 7 Not measured 0.73� 0.01 > 0.625 ≥ 1.17� 0.02

FIG. 2 (color online). Examples of (fully connected) graph
states that are (up to local unitary operations) equivalent to n-
qubit GHZ states with n ¼ 2;…; 5, [(a), …; (d)]. Red circles
represent qubits, connecting lines relate to the states’ generation
method, as described in the text.
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vector σ consisting of the three Pauli operators, i.e.,
σak ¼ ak · σ. The operator B0

k is obtained from Bk by
exchanging all the ak and a0k. Within a LHVmodel, one can
only reachD ¼ maxLHV jhBnij ¼ 2−ðn−1Þ=2 [3]. This can be
seen intuitively by assigning specific values þ1 or −1 to
each of the operators σak , σa0k , which implies that the
recursive relation reduces to Bk ¼ �ð1= ffiffiffi

2
p ÞBk−1 or

Bk ¼ �ð1= ffiffiffi
2

p ÞB0
k−1, where B1 ¼ σa1 ¼ �1 for all pos-

sible choices. It follows that D ¼ 2−ðn−1Þ=2 in this case, and
similarly for all LHV models.
Quantum mechanics allows a violation of the MK

inequality by hBni ¼ 1; by comparison to the maximum
allowed LHV value D, one sees that the violation scales
exponentially with the system size. Note that the MK
inequality achieves the highest violation for any inequality
with two observables per qubit [2]. The observables can be
significantly simplified by choosing the same measurement
directions for all qubits, e.g., σaj ¼ X and σa0j ¼ Y for all j.
It can then be shown that [3]

Bn ¼ ðeiβn j1i⊗nh0j þ e−iβn j0i⊗nh1jÞ; (3)

with βn ≡ ðn − 1Þπ=4. The determination of hBni then
reduces to determining two specific off-diagonal elements
in the density matrix ρ. The states that violate the MK
inequality maximally are then given by jψni ¼
1=

ffiffiffi
2

p ðj0i⊗n þ eiβn j1i⊗nÞ, leading to hψnjBnjψni ¼ 1.
Note that the local observables can be adjusted in such a
way that GHZ states with arbitrary phase βn maximally
violate the corresponding MK inequality; i.e., the relevant
quantity for a violation is given by the absolute value of the
coherences j0i⊗nh1j.
GHZ states of the form jψni for up to n ¼ 14 qubits have

previously been prepared using trapped ions [15] (again 1
qubit is encoded per ion). In that work, the state fidelities
were estimated via measurements of the logical populations
j0i⊗nh0j and j1i⊗nh1j and the coherences j0i⊗nh1j. From
this information, both the graph state Bell observable
hBnðGÞi and the MK Bell observable hBni can now be
calculated.
The relative violations R, defined as R ¼ hBni=D ¼

2ðn−1Þ=2hBni for the MK inequalities and R ¼
hBnðGÞi=DðGÞ for the graph inequality, are presented
graphically in Fig. 3. An exponential scaling is apparent
for the relative violation R of the MK inequalities; i.e.,
by using larger systems a stronger violation of nonlocality
can be observed.
We now show that the violation of the MK inequalities

with larger systems can be more robust to noise than for
smaller systems. This can be illustrated as follows. Assume
the preparation of a noisy n-qubit GHZ state, where
imperfections and decoherence are modeled in such a
way that each qubit is affected by single-qubit depolarizing

noise EjðpÞρ ¼ pρþ ð1 − pÞ=4P3
k¼0 σ

ðjÞ
k ρσðjÞk ; i.e.,

ρ ¼ Q
n
j¼1 EjjGHZnihGHZnj. Even though the state can

be shown straightforwardly to have an exponentially small
fidelity, one nevertheless encounters a violation of the MK
inequality even for a large amount of local depolarizing
noise. To be specific, one finds that trðBnρÞ ¼ pn (the off-
diagonal elements are simply suppressed by this factor),
leading to R ¼ ð ffiffiffi

2
p

pÞn= ffiffiffi
2

p
. That is, as long as p > 1=

ffiffiffi
2

p
,

one encounters a violation of the MK inequality for large
enough n. This means that MK inequalities can tolerate
almost 30% noise per qubit. The graph inequalities for
GHZ states demand a fidelity larger than 0.5 [19], requiring
the noise per qubit to reduce exponentially with sys-
tem size.
A similar behavior can be observed for global depolarizing

noise, where the state is given by ρ ¼ pρþ ð1 − pÞ2−n1. In
this case the relative violation is given by R ¼ 2ðn−1Þ=2p,
which means that one observes a Bell violation as long as
p > 2−ðn−1Þ=2.This clearly shows that also for this errormodel
the violation will be more robust for larger systems.
Conclusion and outlook.—We demonstrate the violation

of multipartite Bell inequalities for graph states that are
resources in MBQC, thereby confirming a connection
between applicability of states as resources for quantum
information processing and violation of LHV models. In
addition, we show that the data in a previous experiment are
sufficient to identify an exponentially increasing Bell
violation with system size [15]. Given the fact that our
setup can readily be scaled up to a larger number of ions,

2 4 6 8 10 12 14

100

101

102

FIG. 3 (color online). Multipartite Bell inequality violations for
GHZ states of different sizes. Data are taken from Ref. [15].R is
the relative violation via the ratio of the quantum mechanical
expectation value of the Bell observables and the maximal
reachable value in a LHV model. It is given by R ¼
hBnðGÞi=DðGÞ for the graph inequalities (red lines) and R ¼
hBni=D ¼ 2ðn−1Þ=2hBni for the MK inequalities (black lines). In
each case, solid (dashed) lines show the ideal (experimental) case.
Error bars in experimental results are all smaller than the point
sizes. Any value larger than R ¼ 1 corresponds to a Bell
violation. Note the logarithmic scaling of the axis.
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this opens the possibility to demonstrate LHV violations
for large-scale systems.
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