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In general, any observed random process includes two qualitatively different forms of randomness:
apparent randomness, which results both from ignorance or lack of control of degrees of freedom in the
system, and intrinsic randomness, which is not ascribable to any such cause. While classical systems only
possess the first kind of randomness, quantum systems may exhibit some intrinsic randomness. In this
Letter, we provide quantum processes in which all the observed randomness is fully intrinsic. These results
are derived under minimal assumptions: the validity of the no-signaling principle and an arbitrary (but not
absolute) lack of freedom of choice. Our results prove that quantum predictions cannot be completed
already in simple finite scenarios, for instance of three parties performing two dichotomic measurements.
Moreover, the observed randomness tends to a perfect random bit when increasing the number of parties,
thus, defining an explicit process attaining full randomness amplification.
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Physical theories aim at providing the best possible
predictions for the phenomena occurring in nature.
Consequently, on observing a probabilistic process, a
natural question arises: how much, if any, of that is
intrinsically unpredictable?
Consider an experimental setup in which a variable takes

different values with different probabilities. This variable
has observed randomness that can be easily estimated from
the measured statistics. In general, we can distinguish two
qualitatively different forms of randomness contributing to
the observed randomness of a process. The first is the
apparent randomness, which appears as a consequence of
imperfections of the system, such as lack of knowledge and
control of all the relevant degrees of freedom. Clearly, an
improvement on our control of the setup reduces this form
of randomness. The second form of randomness is termed
intrinsic randomness and refers to the component of
observed randomness that cannot be ascribed to imperfec-
tions. It is this second form of randomness that should be
considered truly random, as any improvement on our
control of the setup leaves it unchanged.
The quantitative contribution of each form of random-

ness to the observed randomness depends on the physical
theory used to describe the process. In classical theories, for
instance, all observed randomness is apparent, as it is
always possible to explain any random classical process as
the probabilistic mixture of deterministic classical proc-
esses [1,2]. Moving to the quantum domain, the axioms of
quantum theory state that measurements on quantum
particles yield intrinsically random outcomes. Yet, the fact
that a theory makes predictions only in terms of proba-
bilities does not necessarily imply the existence of intrinsic
randomness. It may simply reflect some limitations of the
formalism, in the sense that a better, more complete theory

could restore determinism [3,4]. However, the nonlocal
correlations observed when measuring entangled particles
allow one to assess the randomness of a process indepen-
dent of the full quantum formalism. Under only two
assumptions, (i) the impossibility of instantaneous com-
munication, known as the no-signaling principle, and
(ii) that the measurement settings in a Bell test can be
chosen at random, known as freedom of choice, do non-
local quantum correlations necessarily imply intrinsic
randomness [5]. This is because such correlations cannot
be described as the probabilistic mixture of deterministic
processes.
Up to now, in all Bell tests, the intrinsic randomness

revealed by quantum nonlocality (under said assumptions)
is also mixed with apparent randomness, resulting from the
incompleteness of quantum theory. In this Letter, we ask
the following fundamental question: is there any quantum
process that is as intrinsically random as it is observed to be
and, hence, cannot be better predicted? We answer this
question in the affirmative by providing a family of
quantum processes whose intrinsic randomness can be
computed analytically for arbitrary system sizes and also
demonstrating that this is strictly equal to the observed
randomness. This implies that those events cannot be
further completed, in the sense that a theory giving better
predictions for these events should be either signaling or
have no freedom of choice.
Our results are related to recent attempts to prove the

completeness of quantum physics. In [6], Colbeck and
Renner claimed that no no-signaling theory can have a
better predictive power than quantum theory. However, the
proof, which is based on the quantum violation of the
chained Bell inequality, only works in an asymptotic
regime where the number of measurements by the
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observers tends to infinite. That is, any finite scenario in [6]
is such that quantum predictions can be completed.
Moreover, the proof assumes that the settings in the
inequality can be chosen freely. This last assumption leaves
a significant space for improvement from a logical per-
spective since the free process needed in the proof is
already assumed to be complete. A similar reasoning can be
applied to the regular Bell theorem where the assumption of
availability of initial perfect randomness is referred to as the
free-will assumption [7–11]. A possible way to strengthen
the results on the completeness of quantum predictions is,
hence, to weaken the said assumption by considering
protocols for randomness amplification [12]. There, the
intrinsic randomness of a quantum process could be proven
using a source of imperfect randomness. In fact, the
protocol for full randomness amplification given in [13]
provides a Bell test in which a measured variable has an
intrinsic randomness that tends to be equal to the observed
randomness in the limit of an infinite number of parties. All
these proofs, then, left open a fundamental question: could
it be the case that, for all finite scenarios, there always
exists a gap between the randomness that we observe and
that we can certify? What if completeness of quantum
theory is only an asymptotic property and, therefore,
quantum predictions can be completed in any finite setup?
Our work answers these questions in the negative by

providing finite-size Bell setups in which observed and
intrinsic randomness are strictly equal. In fact, already an
extremely simple Bell scenario consisting of three observ-
ers performing two dichotomic measurements produces
events that cannot be completed. Moreover, our proof
works using arbitrarily small randomness for the choice
of measurements. In this sense, our results provide the
strongest proof of completeness of quantum predictions.
Preliminaries.—Suppose that a Bell test is performed

repeatedly among N parties and the resulting statistics is
given by PobsðajxÞ, where a ¼ ða1;…; aNÞ and x ¼
ðx1;…; xNÞ are the string of outcomes and measurement
inputs of the parties involved. Let g be a function acting on
the measurement results a. As previously explained, there
are different physically relevant notions of randomness.
First, the observed randomness of g for measurements x

is the randomness computed directly from the statistics.
Operationally, this may be defined as the optimal proba-
bility of guessing the outcome of g for input x

Gobsðg;x; PobsÞ ¼ max
k∈ImðgÞ

PobsðgðaÞ ¼ kjxÞ: (1)

where ImðgÞ is the image of function g.
Moving to the definition of the intrinsic randomness, one

should consider all possible preparations of the observed
statistics in terms of no-signaling probability distributions.
In our context, a particular preparation reads

PobsðajxÞ ¼
X
e

pðejxÞPex
e ðajxÞ; (2)

where the Pex
e are extremal points of the no-signaling set

[14]. The terms pðejxÞ may depend on x, which accounts
for possible correlations between the preparation e and the
measurement settings x, given that the choice of measure-
ments are not assumed to be free. Hence, we define the
intrinsic randomness of a function g by optimizing over all
possible nonsignaling preparations of Pobs so as to min-
imize the randomness of g. In other words,

Gintðg;x; PobsÞ ¼ max
fpðejxÞ;Pex

e g

X
e

pðejxÞGobsðg;x; Pex
e Þ;

subject toX
e

pðejxÞPex
e ðajxÞ ¼ PobsðajxÞ; (3)

pðxjeÞ ≥ δ with δ > 0;∀x; e; (4)

where Gobsðg;x; Pex
e Þ ¼ maxk Pex

e ðgðaÞ ¼ kjxÞis also the
intrinsic randomness of Pex

e , since intrinsic and observed
randomness must coincide for extremal points of the
nonsignaling set. Note that the condition pðxjeÞ ≥ δ > 0
allows for an arbitrary (but not absolute) relaxation of the
freedom of choice assumption by allowing for arbitrary (yet
not complete) correlations between the preparation and the
measurement settings. Physically, this condition ensures
that all measurement combinations appear for all possible
preparations e (See [15] for the significance of this
condition). An example of a source of randomness ful-
filling this condition is a source of partially random bits, in
which the bits can be partially predicted. This source is
known in classical computer science as a Santha-Vazirani
source [16]. Note, however, that our definition allows
sources more general than Santha-Vazirani sources.
From a cryptographic point of view, the observed

randomness is the one perceived by the parties performing
the Bell test, whereas the intrinsic randomness is that
perceived by a nonsignaling eavesdropper possessing
knowledge of the preparation of the observed correlations
and with the ability to arbitrarily (yet not fully) bias the
choice of the measurement settings.
In general, Gobs is strictly larger than Gint, as the set of

nonsignaling correlations is larger than the quantum. When
expressed in terms of these quantities, the results in [17,18]
provide a Bell test in which Gint approaches Gobs (and to
1=2) in the limit of an infinite number of measurements and
assuming free choices, that is, pðxjeÞ in (2) is independent
of e. The results in [12] allow some relaxation of this last
condition. The results in [13] arbitrarily relaxed the free-
choice condition and give a Bell test in which Gint tends to
Gobs (and both tend to 1=2) in the limit of an infinite
number of parties. Here, we provide a significantly stronger
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proof, as we allow the same level of relaxation on free
choices and provide Bell tests in which Gint ¼ Gobs for any
number of parties. Moreover, a perfect random bit is
obtained in the limit of an infinite number of parties.
Scenario.—Our scenario consists of N parties where

each performs two measurements of two outcomes. In what
follows, we adopt a spinlike notation and label the outputs
by �1. Then, any nonsignaling probability distribution can
be written as (for simplicity, we give the expression for
three parties, but it easily generalizes to an arbitrary
number)

Pða1; a2; a3jx1; x2; x3Þ ¼
1

8
ð1þ a1hAðx1Þ

1 i þ a2hAðx2Þ
2 i

þa3hAðx3Þ
3 iþa1a2hAðx1Þ

1 Aðx2Þ
2 i

þa1a3hAðx1Þ
1 Aðx3Þ

3 i
þa2a3hAðx2Þ

2 Aðx3Þ
3 i

þa1a2a3hAðx1Þ
1 Aðx2Þ

2 Aðx3Þ
3 iÞ; (5)

where AðxiÞ
i denotes the outputs of measurement xi by each

party i.
In this scenario, we will test a specific family of Bell

inequalities introduced by Mermin [19] and, hence, known
as Mermin inequalities. These inequalities can be described
in a recursive way through the description of the function
related to that inequality. The Mermin function reads

MN ¼ 1

2
MN−1ðAð0Þ

N þ Að1Þ
N Þ þ 1

2
M0

N−1ðAð0Þ
N − Að1Þ

N Þ; (6)

where M1 ¼ Að0Þ
1 and the function M0

N−1 is that obtained

from MN−1 after swapping Að0Þ
i ↔Að1Þ

i . It can be seen that
the function MN consists of the sum, up to some signs, of
2N (2N−1) products of local observables for even (odd) N.
Local models are such that MN ≤ 1. The maximal non-
signaling violation of the inequality is equal to 2N (2N−1)
for even (odd) N, that is, all the products of observables
appearing in the inequality are equal to �1. We study
probability distributions that give this maximal violation
and focus our analysis on a function f that maps the N
measurement results into one bit as follows

fðaÞ ¼
�þ1 n−ðaÞ ¼ ð4jþ 2Þ; with j ∈ f0; 1; 2;…g
−1 otherwise

;

(7)

where n−ðaÞ denotes the number of results in a that are
equal to −1.
Results.—Our goal in what follows is to quantify the

intrinsic randomness of the bit defined by fðaÞ for those
distributions maximally violating the Mermin inequality
for odd N. We first prove the following

Lemma 1.— Let PMðajxÞ be an N-partite (odd N)
nonsignaling probability distribution maximally violating
the corresponding Mermin inequality. Then, for the input
xm ¼ ð0;…; 0; 1Þ appearing in the inequality,

PMðfðaÞ ¼ hN jxmÞ ≥ 1=2; with

hN ¼
ffiffiffi
2

p
cos

�
πðN þ 4Þ

4

�
: (8)

Note that, as N is odd, hN ¼ �1. Operationally, the
Lemma implies that, for all points maximally violating the
Mermin inequality, the bit defined by f is biased towards
the same value hN . Since the proof of the Lemma for
arbitrary odd N is convoluted, we give the explicit proof for
N ¼ 3 here, which already conveys the main ingredients of
the general proof, and relegate the generalization to the
Supplemental Material [20].
Proof for three parties.—With some abuse of notation,

the tripartite Mermin inequality may be expressed as

M3 ¼ h001i þ h010i þ h100i − h111i ≤ 2; (9)

where hx1x2x3i ¼ hAðx1Þ
1 Aðx2Þ

2 Aðx3Þ
3 i and similarly for the

other terms. The maximal nonsignaling violation assigns
M3 ¼ 4 which can only occur when the first three corre-
lators in (9) take their maximum value of þ1 and the last
takes its minimum of −1.
Let us take the corresponding input combination

appearing in the inequality (9), xm ¼ ð0; 0; 1Þ. Maximal
violation of M3 imposes the following conditions:
(i) h001i ¼ 1. This further implies h0i1 ¼ h01i23,
h0i2 ¼ h01i13, and h1i3 ¼ h00i12. (ii) h010i ¼ 1 implying
h0i1 ¼ h10i23, h1i2 ¼ h00i13, and h0i3 ¼ h01i12.
(iii) h100i ¼ 1 implying h1i1 ¼ h00i23, h0i2 ¼ h10i13,
and h0i3 ¼ h10i12. (iv) h111i ¼ −1 implying
h1i1 ¼ −h11i23, h1i2 ¼ −h11i13, and h1i3 ¼ −h11i12.
Imposing these relations on (5) for input xm ¼ ð0; 0; 1Þ

one gets

PMða1; a2; a3j0; 0; 1Þ

¼ 1

8
ð1þ a1a2a3 þ ða1 þ a2a3Þh0i1

þ ða2 þ a1a3Þh0i2 þ ða3 þ a1a2Þh1i3Þ: (10)

Using all these constraints and the definition of the
function (7), Eq. (8) can be expressed as

PMðfðaÞ ¼ þ1jxmÞ ¼ PMð1;−1;−1jxmÞ
þ PMð−1; 1;−1jxmÞ
þ PMð−1;−1; 1jxmÞ

¼ 1

4
ð3 − h0i1 − h0i2 − h1i3Þ: (11)
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Proving that PðfðaÞ ¼ þ1jxmÞ ≥ 1=2 then amounts to
showing that h0i1 þ h0i2 þ h1i3 ≤ 1. This form is very
convenient since it reminds one of a positivity condition of
probabilities.
We, then, consider the input combination x̄m such that

all the bits in x̄m are different from those in xm. We call this
the swapped input, which, in the previous case, is
x̄m ¼ ð1; 1; 0Þ. Note that this is not an input appearing
in the Mermin inequality. However, using the previous
constraints derived for distributions PM maximally violat-
ing the inequality, one has

PMða1; a2; a3j1; 1; 0Þ ¼
1

8
ð1þ a1h1i1 þ a2h1i2 þ a3h0i3

þ a1a2h11i12 þ a1a3h10i13
þ a2a3h10i23 þ a1a2a3h110i123Þ

¼ 1

8
ð1þ a1h1i1 þ a2h1i2 þ a3h0i3

− a1a2h1i3 þ a1a3h0i2
þ a2a3h0i1 þ a1a2a3h110i123Þ;

(12)

where the second equality results from the relations
h11i12 ¼ −h1i3, h10i13 ¼ h0i2, and h10i23 ¼ h0i1.
It can be easily verified that summing the two positivity

conditions PMð1; 1;−1jx̄mÞ ≥ 0 and PMð−1;−1; 1jx̄mÞ ≥
0 gives the result we seek, namely 1 − h0i1 − h0i2−
h1i3 ≥ 0, which completes the proof. ▪
Using the previous Lemma, it is rather easy to prove the

following
Theorem 1.— Let PobsðajxÞ be an N-partite (odd N)

nonsignaling probability distribution maximally violating
the corresponding Mermin inequality. Then the intrinsic
and the observed randomness of the function f are equal for
the input xm appearing in the Mermin inequality

Gintðf;xm; PobsÞ ¼ Gobsðf;xm; PobsÞ;

where

Gobsðf;xm; PobsÞ ¼ max
k∈fþ1;−1gPobsðfðaÞ ¼ kjxmÞ:

Proof of Theorem 1.—Since Pobs maximally and alge-
braically violates the Mermin inequality, all the extremal
distributions Pex

e appearing in its decomposition must also
necessarily lead to the maximal violation of the Mermin
inequality (see Supplemental Material [20] for details).
Hence, the randomness of f in these distributions as well
satisfies Eq. (8) of Lemma 1. Using this, we find

Gobsðf;xm; Pex
e Þ ¼ max

k∈fþ1;−1gP
ex
e ðfðaÞ ¼ kjxmÞ

¼ jPex
e ðfðaÞ ¼ hN jxmÞ − 1=2j þ 1=2

¼ Pex
e ðfðaÞ ¼ hN jxmÞ; (13)

for every e. Therefore,

Gintðf;xm; PobsÞ
¼ max

fpðejxmÞ;Pex
e g

X
e

pðejxmÞGobsðf;xm; Pex
e Þ

¼ max
fpðejxmÞ;Pex

e g

X
e

pðejxmÞPex
e ðfðaÞ ¼ hN jxmÞ

¼ PobsðfðaÞ ¼ hN jxmÞ: (14)

Likewise, the last equality follows from the constraintP
epðejxÞPeðajxÞ ¼ PobsðajxÞ. On the other hand, the

observed randomness for f is, Gobsðf;xm; PobsÞ ¼
PobsðfðaÞ ¼ hN jxmÞ. ▪
The previous technical results are valid for any

nonsignaling distribution maximally violating the
Mermin inequality. For odd N, this maximal violation
can be attained by a unique quantum distribution,
denoted by PGHZðajxÞ, resulting from measurements on
a Greenberger-Horne-Zeilinger (GHZ) state. When apply-
ing Theorem 1 to this distribution, one gets
Main result.—Let PGHZðajxÞ be the N-partite (odd N)

quantum probability distribution attaining the maximal
violation of the Mermin inequality. The intrinsic and
observed randomness of f for the Mermin input xm
satisfy

Gint=obsðf;xm; PGHZÞ ¼
1

2
þ 1

2ðNþ1Þ=2 : (15)

This follows straightforwardly from Theorem 1, since
PGHZðajxÞ ¼ 1=2N−1 for outcomes a with an even number
of results equal to −1 and for those measurements
appearing in the Mermin inequality.
It is important to remark that fðajxmÞ approaches a

perfect random bit exponentially with the number of
parties. In fact, this bit defines a process in which full
randomness amplification takes place. Yet, it is not a
complete protocol as, contrary to the existing proposal
in [13], no estimation part is provided.
Discussion.—We have identified the first family of

quantum processes whose observed randomness can be
proven to be fully intrinsic. In other words, for the
considered processes, quantum theory gives predictions
as accurate as any no-signaling theory, possibly supra-
quantum, can give and, hence, admit no further completion.
Our results hold under the minimal assumptions: the
validity of the no-signaling principle and an arbitrary
(but not complete) relaxation of the freedom of choice.
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The latter is subtle, and much attention in recent years has
focused on relaxing it in Bell experiments [7–11].
Our work raises several questions. Our main motivation

here has been to understand the ultimate limits on the
completeness of quantum theory for finite tests, and thus,
we have worked in a noiseless regime. It is interesting to
consider how our results would have to be modified to
encompass scenarios including noise and, hence, be ame-
nable to experiments. The presence of noise modifies our
results from two different viewpoints.
First, noise is due to lack of control of the setup and,

thus, a source of apparent randomness, which immediately
implies a gap between intrinsic and observed randomness.
Second, in a noisy situation, it is impossible to arbitrarily
relax the freedom of choice assumption, quantified by δ in
Eq. (4). In fact, there is a tradeoff between the amount of
relaxation of this condition and the violation needed to
certify the presence of any intrinsic randomness. The
reason is that, for a sufficiently small value of δ, any
correlations not attaining the maximal nonsignaling viola-
tion of a Bell inequality can be reproduced using purely
deterministic local strategies. It seems natural, in a practical
context, to extend the definition of intrinsic randomness by
considering bounded relaxations of the freedom of choice
assumption and nonmaximal violations of Bell inequalities.
These investigations could lead to stronger experimental
tests on the completeness of quantum predictions, given
that they would rely on significantly more relaxed assump-
tions than any other quantum experiment performed
to date.
From a purely theoretical perspective, our results certify

a maximum of one bit of randomness for any system size. It
would be interesting to extend these analytical results to
certify randomness that scales with the number of parties.
This could, for instance, be accomplished with functions of
increasing outcomes. In a related context, it would also be
interesting to explore whether similar results are possible in
a bipartite scenario or, on the contrary, whether an
asymptotic number of parties is necessary for full random-
ness amplification.
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