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We show that the no-disturbance principle imposes a tradeoff between locally contextual correlations
violating the Klyachko-Can-Binicioǧlu-Shumovski inequality and spatially separated correlations violating
the Clauser-Horne-Shimony-Holt inequality. The violation of one inequality forbids the violation of the
other. We also obtain the corresponding monogamy relation imposed by quantum theory for a qutrit-qubit
system. Our results show the existence of fundamental monogamy relations between contextuality and
nonlocality that suggest that entanglement might be a particular form of a more fundamental resource.
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Introduction.—Since its inception, quantum theory (QT)
has radically altered our understanding of nature. The
pioneering works of Kochen and Specker (KS) [1,2] and
Bell [3,4], and the subsequent experiments [5,6] demon-
strated that nature denies the possibility of noncontextual
and local hidden variables.
Theoretical proofs of the impossibility of hidden vari-

ables fall into two seemingly distinct classes. In KS-like
proofs, there is a single observer that performs measure-
ments on a physical system, whereas in Bell proofs there
are two spatially separated observers, customarily called
Alice and Bob, each performing some measurements on
their respective physical systems. Both classes have a
common trait: both ask whether a joint probability dis-
tribution for all the measurements exists and in both cases
this question can be recast as whether or not some set of
correlation inequalities is violated [7,8].
For the KS scenario, the simplest inequality violated by

QT is the Klyachko-Can-Binicioǧlu-Shumovski (KCBS)
inequality [9]. Its quantum violation requires, at least, a
single three-dimensional quantum system (qutrit) and it has
been experimentally observed recently [10,11]. For the Bell
scenario, the simplest inequality violated by QT is the
Clauser-Horne-Shimony-Holt (CHSH) inequality [12]. Its
quantum violation requires a minimal system of two
spatially separated two-dimensional quantum systems
(qubits) and it has been experimentally observed numerous
times since the seminal experiments in Refs. [5,6].
In this Letter we qualitatively and quantitatively study

tradeoffs between these two fundamental inequalities
imposed by the principle of no-disturbance (ND) as well
as by QT.
The ND principle is a generalization of the no-signaling

principle that refers to compatible observables instead of
spacelike separated observables [13–16]. It states that, for
any three observables A, B, and C such that A and B are

compatible, and A and C are compatible, the probabilities
of outcomes of A do not depend on whether A was
measured with B or with C,

pðaÞ ¼
X
b

pða; bÞ ¼
X
c

pða; cÞ: (1)

QT satisfies the ND principle, but there are theories that
satisfy the ND principle and violate noncontextuality and
Bell inequalities more than QT.
We first show that, in an experiment to test KCBS

correlations within a single system and CHSH correlations
between this system and another system, the violation of
one inequality forbids the violation of the other, defining a
so-called monogamy (in analogy to Refs. [17,18]). This
monogamy is implied by the ND principle and can be
derived without any reference to QT. We also obtain the
quantum version of this monogamy and show that the
tradeoff between the violations of the KCBS and CHSH
inequalities is more stringent in QT than the one resulting
from the ND principle.
No-disturbance monogamy between the KCBS and

CHSH inequalities.—Consider the following scenario:
Alice and Bob share pairs of correlated systems. Alice
can perform five measurements fA1;…; A5g on her system.
Each measurement has two outcomes �1 and the mea-
surements Ai and Aiþ1 (with the sum modulo 5) are
compatible. For each pair of systems, Alice randomly
chooses two compatible measurements Ai and Aiþ1, and
Bob randomly chooses only one of two incompatible
measurements B1 or B2, each with outcomes �1. The
compatibility relations among the seven measurements are
illustrated in Fig. 1.
After many rounds of the experiment, Alice and Bob can

evaluate the following correlations (mean values of prod-
ucts of outcomes):
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hAiAiþ1i; hAiBji; hAiAiþ1Bji; (2)

where i ¼ 1;…; 5 and j ¼ 1, 2. These correlations can be
used in two different tests. The first one is a test of the
KCBS noncontextuality inequality on Alice’s system, i.e.,

κA ¼ hA1A2i þ hA2A3i þ hA3A4i þ hA4A5i

þ hA5A1i ≥
NCHV − 3: (3)

The second one is a test of the CHSH Bell inequality
between Alice’s and Bob’s subsystems, i.e.,

βAB ¼hAiþ1B1iþhAiþ1B2iþhAi−1B1i− hAi−1B2i ≥
LHV−2;

(4)

where Aiþ1 and Ai−1 can be any two incompatible mea-
surements from Alice’s set.
Both the KCBS and CHSH inequalities are tight in the

sense that the violation of each inequality implies that the
corresponding correlations cannot be described either via a
noncontextual hidden variable (NCHV) model or a local
hidden variable (LHV) model. The lack of violation implies
the existence of such a model. The existence of a non-
contextual or local hidden variable model is equivalent to
the existence of a joint probability distribution over all the
observables involved in the inequality [7,8,19].
An important property of both inequalities is that the

classical bounds of −3 and −2 result from the noncontex-
tuality assumption in both cases. Also in both cases, these
bounds can be violated due to the lack of a joint probability
distribution. Nevertheless, the maximal violations can also
be bounded. These contextual bounds may result from
various principles [20–22]. One of such principles is the no-
disturbance (ND) principle.
The ND bound of the KCBS inequality is −5 and for the

CHSH inequality the ND bound is −4. Although these

bounds are the same as the algebraic bounds of both
inequalities, the ND principle leads to a nontrivial tradeoff
between their violations.
Let us prove the monogamy of the inequalities (3) and

(4) using the techniques of Refs. [16,23]. Since Bell
inequalities are also noncontextuality inequalities [24],
one can sum both inequalities and produce a new non-
contextuality inequality and split the terms into two new

groups CðiÞ
1 and CðiÞ

2

CðiÞ
1 þ CðiÞ

2 ≥
NCHV − 5; (5)

where

CðiÞ
1 ¼ hAiþ1B1i þ hAiþ1Aiþ2i þ hAiþ2Ai−2i

þ hAi−2Ai−1i þ hAi−1B1i; (6a)

CðiÞ
2 ¼ hAiþ1Aiiþ hAi−1Aiiþ hAiþ1B2i− hAi−1B2i: (6b)

Note that CðiÞ
1 and CðiÞ

2 have the form of the KCBS and
CHSH expressions, respectively.
For any theory satisfying the ND principle, the lower

bounds for CðiÞ
1 and CðiÞ

2 are the same as those for NCHV
theories, namely,

CðiÞ
1 ≥

ND − 3; (7a)

CðiÞ
2 ≥

ND − 2: (7b)

This is because B1 and B2 are compatible with all
measurements Ai and the ND principle allows one to
construct joint probability distributions recovering the

measurements statistics involved in CðiÞ
1 and CðiÞ

2 . Let us
simplify the notation by using pðaiÞ ¼ pðAi ¼ aiÞ. The
experimental probabilities pðai; aiþ1; bjÞ allow us to cal-
culate the marginal probabilities pðai; aiþ1Þ, pðai; bjÞ,
pðaiÞ, and pðbjÞ. Following Ref. [25], one can construct

a joint probability distribution from which CðiÞ
1 can be

derived, in the following way:

pðaiþ1;aiþ2;ai−1;ai−2;b1Þ

¼pðaiþ1;aiþ2;b1Þpðaiþ2;ai−2;b1Þpðai−1;ai−2;b1Þ
pðaiþ2b1Þpðai−2b1Þ

: (8)

Similarly, the joint probability distribution from which CðiÞ
2

can be derived is

pðai−1; ai; aiþ1; b2Þ ¼
pðai; ai−1; b2Þpðai; aiþ1; b2Þ

pðai; b2Þ
: (9)

A1

A2

A3

A5 B1

B2

A4

FIG. 1. Compatibility graph corresponding to the measure-
ments in the scenario for the monogamy relation between locally
contextual and nonlocal correlations. A1;…; A5 are five cyclically
compatible measurements on Alice’s system, and B1 and B2 are
two incompatible measurements on Bob’s system. Vertices
represent measurements and adjacent vertices represent pairwise
compatible measurements.
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The above joint probability distributions recover all meas-
urable marginals.
The ND principle is necessary for the validity of the

above construction. For example, one may calculate
pðai−1; aiÞ from pðai−1; ai; aiþ1; b2Þ in the following way:X

aiþ1;b2

pðai−1; ai; aiþ1; b2Þ

¼
X
b2

�X
aiþ1

pðai; ai−1; b2Þpðai; aiþ1; b2Þ
pðai; b2Þ

�

¼
X
b2

pðai; ai−1; b2Þ ¼ pðai; ai−1Þ: (10)

On the other hand, one may also calculate pðaiþ1; aiÞ asX
ai−1;b2

pðai−1; ai; aiþ1; b2Þ

¼
X
b2

�X
ai−1

pðai; ai−1; b2Þpðai; aiþ1; b2Þ
pðai; b2Þ

�

¼
X
b2

pðai; aiþ1; b2Þ ¼ pðai; aiþ1Þ: (11)

In both derivations we assumedX
ai−1

pðai;ai−1;b2Þ ¼
X
aiþ1

pðai;aiþ1;b2Þ ¼ pðai;b2Þ; (12)

which is exactly the ND principle.
Note that the probabilities on the left hand sides of

Eqs. (8) and (9) may not be directly defined within the ND
theory (like quantum theory); i.e., the theory may not allow
for a direct evaluation of the joint probability for all
measurements. However, the constructions on the right
hand sides take into account only the probabilities that are
measurable in the laboratory. These probabilities are
defined within ND theories, since these theories aim to
explain the experimental data. Moreover, the above con-
structions recover all measurable marginals compliant with
ND theories.
The existence of a joint probability distribution for CðiÞ

1

and CðiÞ
2 guarantees that the inequalities (7a) and (7b) are

satisfied [7,19], and that their sum is always bounded from
below by−5 in any ND theory. This, in turn, implies that in
any ND theory there is a monogamy relation between the
KCBS and CHSH inequalities; i.e., only one of them can be
violated:

βAB þ κA ≥
ND − 5: (13)

The scenario discussed before can be easily extended to
the case in which Bob, instead of two incompatible
measurements B1 and B2, has five cyclically compatible
measurements A0

j (j ¼ 1;…; 5) and he also tries to violate

the KCBS inequality on his system. On the other hand,
there is no reason for any monogamy between the KCBS
tests of Alice and Bob, since they can always prepare their
local systems independently in such a way that local
measurements will violate the KCBS inequality.
Quantum monogamy between local contextuality and

nonlocality.—The monogamy relation (13) holds in any
theory satisfying the ND principe such as QT. A natural
question is whether QT imposes an additional monogamy
relation between quantum contextual and nonlocal corre-
lations, similar to the quantum monogamy of nonlocality
found in Ref. [18].
To study this, let us consider a quantum mechanical

implementation of the scenario described above in which
Alice has five measurements Ai (i ¼ 1;…; 5) and Bob two
measurements B1 and B2. Alice tries to violate the KCBS
inequality on her system and, in addition, Alice and Bob try
to violate the CHSH inequality using Alice’s incompatible
measurements A1 and A4, namely,

hA1B1i þ hA1B2i þ hA4B1i − hA4B2i ≥
LHV − 2: (14)

We assume that Alice’s system is a qutrit and Bob’s system
is a qubit. The corresponding basis states are fj0ij1i; j2ig
and fj0i; j1ig, respectively.
We also assume that Alice’s measurements are of the

form

Ai ¼ 2jviihvij − 1; (15)

where hvijviþ1i ¼ 0 (with the sum modulo 5) and they are
chosen to maximize the violation of the KCBS inequality.
In particular, we assume

jvii ¼N
�
cos

�
4πi
5

�
j0i þ sin

�
4πi
5

�
j1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

�
π

5

�s
j2i

�
;

(16)

whereN is a normalization constant. On the other hand, for
the CHSH scenario we choose Bob’s observables to be two
Pauli operators B1 ¼ Z and B2 ¼ X.
The form of vectors (16) makes the KCBS operator

diagonal in the computational basis. The eigenvalues of this
operator are highly degenerated

λ1¼ λ2¼ λ3¼ λ4¼−5þ2
ffiffiffi
5

p
; λ5¼ λ6¼5−4

ffiffiffi
5

p
(17)

and correspond to eigenvectors

jλ1i ¼ j00i; jλ2i ¼ j01i; jλ3i ¼ j10i; jλ4i ¼ j11i;
jλ5i ¼ j20i; jλ6i ¼ j21i: (18)

On the other hand, the CHSH operator can be written as a
direct sum M⊕ −M, where
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M ¼

0
BBB@

1 − 1ffiffi
5

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2ffiffi

5
p

q ffiffiffiffiffiffiffiffiffiffiffiffi
4
5
þ 4ffiffi

5
p

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2ffiffi

5
p

q
1 − ffiffiffi

5
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 3ffiffi

5
p

q
ffiffiffiffiffiffiffiffiffiffiffiffi
4
5
þ 4ffiffi

5
p

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 3ffiffi

5
p

q
2 − 4ffiffi

5
p

1
CCCA (19)

is represented in the basis fj01i; j10i; j21ig. The second
matrix −M is the same matrix as M (multiplied by −1);
however, it is represented in the basis fj00i; j11i; j20ig,
respectively. The eigenvectors of M are

jλ1i ¼
1ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
5

pp j01i þ 1ffiffiffi
2

p j10i −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
− 1

2
ffiffiffi
5

p
s

j21i; (20a)

jλ2i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1ffiffiffi

5
p

s
j01i þ 1

51=4
j21i; (20b)

jλ3i ¼
1ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
5

pp j01i − 1ffiffiffi
2

p j10i −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
− 1

2
ffiffiffi
5

p
s

j21i; (20c)

and the corresponding eigenvalues are

λ1 ≈ −2.808; λ2 ¼ 2; λ3 ≈ 0.336: (21)

The diagonal form of the KCBS operator and the
separation of the CHSH operator into two symmetric parts
reduce our monogamy problem to three real dimensions.
Due to this symmetry, every quantum state has to produce a
point that lies inside the region parametrized by only two
real parameters corresponding to this three-dimensional
space. It is important to notice that the KCBS operator can
be written as N ⊕N, where N ¼ diagf−5þ 2

ffiffiffi
5

p
;−5þ

2
ffiffiffi
5

p
; 5 − 4

ffiffiffi
5

p g is represented in the same basis as M.
Therefore, it is enough to consider the monogamy problem
between operators M and N.
One can represent the quantum region corresponding to

operators M and N using the following parametrization:

jθ;φi ¼ cos θjai þ sin θ cosφjbi þ sin θ sinφjci: (22)

The basis in the above formula is for convenience taken
to be jai ¼ ð0; 0; 1ÞT (vector that maximizes N),
jbi ¼ ðα; β; 0ÞT , jci ¼ ð−β; α; 0ÞT , where α ≈ 0.42 and
β ≈ 0.91. The last two vectors are chosen to minimize
and maximize M, respectively, for the minimal value of N.
In other words, jbi and jci are eigenvectors of the upper-left
2 × 2 submatrix of M. The above parametrization gives

hMiθ;φ ¼ γ1cos2θ þ ðγ2 þ γ3 cos 2φÞsin2θ
þ cos θ sin θðγ4 cosφþ γ5 sinφÞ; (23a)

hNiθ ¼ − ffiffiffi
5

p
þ ð5 − 3

ffiffiffi
5

p
Þ cos 2θ; (23b)

where γ1 ≈ 0.21, γ2 ≈ −0.34, γ3 ≈ −1.38, γ4 ≈ 3.47,
and γ5 ≈ −1.94.
The region corresponding to −M and N is given by the

same formulas, i.e., −hMiθ;ϕ and hNiθ. However, this
time the computational basis fj01i; j10i; j21ig has to be
changed to fj00i; j11i; j20ig.
The boundaries of these regions can be analytically

obtained via minimization and maximization of hMiθ;φ (or
−hMiθ;φ). This procedure reduces one of two parameters.
In particular, one obtains

tan θ ¼ csc 2φðγ5 cosφþ γ4 sinφÞ
2γ3

: (24)

Both regions and their corresponding boundaries are
represented in Fig. 2.
Interestingly, the quantum boundary touches the no-

disturbance and no-signaling boundary in a single point;
however, unlike in the case of monogamy of two CHSH
inequalities, this point does not correspond to classical
bounds; i.e., it is not of the form (hCHSHi ¼ −2,
hKCBSi ¼ −3). Instead, this point is (hCHSHi ≈ −2.08,
hKCBSi ¼ −2.92). We speculate that the classical point
can be achieved using different measurement settings and
perhaps a larger system.
Finally, the two classes of (un-normalized) states recov-

ering both quantum boundaries are

jψþ
φ i ¼ fðφÞj01i þ gðφÞj10i þ j21i; (25a)

jψ−
φ i ¼ fðφÞj00i þ gðφÞj11i þ j20i; (25b)

where

CHSH

K
C

B
S

4 2 0 2 4
5

4

3

2

1

FIG. 2 (color online). Allowed average values of CHSH and
KCBS operators. The region can be divided into two overlapping
parts. The first part is spanned by vectors that are linear combi-
nations of fj01i; j10i; j21ig and is bounded by the solid curve. The
second region corresponds to the basis fj00i; j11i; j20ig and is
bounded by the dashed curve. The solid line corresponds to the no-
disturbance and no-signaling bound.
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fðφÞ ≈ −0.05þ 0.15 cotφ − 0.57 tanφ; (26a)

gðφÞ ≈ 0.72þ 0.32 cotφþ 0.26 tanφ: (26b)

Due to the fact that the boundaries of both regions cross,
one has to switch between the two classes in order to
reproduce the total boundary of the quantum region.
Conclusions.—Previous works on contextuality and

nonlocality monogamy relations had identified tradeoffs
between the violation of either noncontextuality inequal-
ities of the same type [16] or Bell inequalities of the same
type [18,23,26]. However, a fundamental question was
whether similar relations exist between contextual corre-
lations and nonlocal correlations. Here we have shown
that this is the case. Specifically, we have shown that the
ND principle imposes a fundamental monogamy relation
between the local violation of the KCBS inequality, the
simplest nocontextuality inequality violated by QT, and
the nonlocal violation of the CHSH inequality, the
simplest Bell inequality violated by QT. In addition,
we have shown that QT imposes an even stronger
restriction. This monogamy between contextuality and
nonlocality can be experimentally observed in qutrit-qubit
systems.
Although further exploration both theoretically and

experimentally is needed, our results show the existence
of fundamental monogamy relations between (local) con-
textuality and nonlocality and suggest that monogamy
relations between different types of correlations might be
ubiquitous in nature.
A final fundamental observation can be made. In QT,

monogamy of nonlocality [18] follows from monogamy
of entanglement [17], a quantum resource that may be
differently distributed among the parties [27]. A similar
reasoning applied to the contextuality-nonlocality
monogamy discussed in this Letter suggests the existence
of a quantum resource of which entanglement is just a
particular form. This follows from the fact that the
resource needed to violate the KCBS inequality consumes
the entanglement needed to violate the CHSH inequality
and, at the same time, can be transformed into entangle-
ment. This more general resource requires further
investigation.
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