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A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a
transition from a flow state where particles remain well separated by lubrication layers, to one dominated
by frictional contacts. We show here that reasonable assumptions about contact proliferation predict two
distinct types of DST in the absence of inertia. The first occurs at densities above the jamming point of
frictional particles; here, the thickened state is completely jammed and (unless particles deform) cannot
flow without inhomogeneity or fracture. The second regime shows strain-rate hysteresis and arises at
somewhat lower densities, where the thickened phase flows smoothly. DST is predicted to arise when
finite-range repulsions defer contact formation until a characteristic stress level is exceeded.
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Shear thickening, the increase of viscosity η with strain
rate γ

:
, is found in many dense suspensions [1–3]. It has

dramatic effects: a person can run across a tank of material
that is completely fluid if stirred slowly [1]. The details of
shear thickening depend on various factors including
Brownian motion, gravity, and inertia; in what follows
we consider only large particles in a density-matched
viscous fluid, where all three are negligible. Some facts
are generic however. (i) If the particle volume fraction ϕ
is low enough, η increases smoothly with strain rate,
giving continuous shear thickening (CST). (ii) For large
enough ϕ, a jump of shear stress σ ¼ ηγ

:
is instead observed

on increasing γ
:
, giving discontinuous shear thickening

(DST). (iii) DST is reversible if γ
:
is reduced, but flow-

curve hysteresis is often reported [4]. (iv) Particle deform-
ability and interactions are important: emulsions and foams
do not normally display shear thickening, nor do strongly
attractive particles [1,2]. Short-range interactions can alter
the onset density for shear thickening [5]. (v) For fixed
particle type, the onset stress (but not strain rate) varies only
weakly with ϕ [1,6].
Long-standing explanations for CST and/or DST include

the flow-induced formation of hydrodynamic clusters [7–9]
and shear-induced melting of a partially ordered state [10].
For DST, these can be set aside for reasons reviewed in [1].
A more promising avenue [2], recently revived [1,11,12], is
that shear thickening is related to the well-known tendency
of granular materials to expand under flow (dilatancy).
In [1,12] it was proposed that this causes DST under very
broad conditions.
This argument appears too general since it predicts DST

for purely hard particles without inertia. Such particles do
show dilatancy: ϕ decreases with γ

:
at fixed particle pressure

P [13]. However dimensional analysis implies that steady
state flows in such a system depend on a single parameter

[14], the viscous number Iv ¼ η0γ
:
=P, which fixes both ϕ

and σ=P. (Here η0 is the solvent viscosity.) Hence at fixed ϕ
the stress remains linear in strain rate, σ ¼ ηðϕÞγ: , albeit
with a viscosity ηðϕÞ that diverges at a friction-dependent
jamming density ϕm ≃ 0.58 [13]. Beyond ϕm the system is
completely jammed, so homogeneous flow is impossible;
here one expects either fracture [15] or shear-banding with
particle migration [16]. Note that the smooth divergence of
viscosity at a friction-dependent ϕm implies proliferating
interparticle contacts as jamming is approached from the
fluid side, ϕ < ϕm. (This is established for suspensions
under shear [13,17]. While contacts are forbidden for
perfect hard Stokesian spheres [18], their required combi-
nation of zero roughness and zero slip at the solid surface is
overidealized [19].)
Thus dilatancy at fixed P does not guarantee shear

thickening at fixed ϕ. Instead it can be argued [1] that shear
thickening arises when the stress exceeds some scale, set by
finite interparticle repulsions, at which lubrication films
convert to frictional contacts. Such repulsions, by prevent-
ing breakdown of lubrication films [20], can defer the onset
of jamming and make it sudden [21].
Two recent papers [5,22] support a growing consensus

that DST involves a stress-induced transition from lubri-
cation to frictional contacts. Both argue that at low strain
rates particles do not touch: contacts are lubricated, so their
static friction coefficient, m, is irrelevant. The viscosity of
such nonfrictional particles would diverge only at random
close packing, ϕ0 ≈ 0.64 [23,24]. The repulsive interaction
that prevents contact formation is overcome at large stress
[22], converting the system into an immersed assembly of
frictional grains, whose viscosity diverges instead at
ϕm < ϕ0. CST is then argued to arise, for ϕ < ϕm, by a
stress-induced crossover from the moderate viscosity of the
lubricated state to the much higher one of the frictional
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contact network. (Inertia, although sometimes present [5],
is inessential to this basic argument.) For ϕ > ϕm the
system is completely jammed at high stress. Only in this
regime is any form of DST predicted in [5,22].
This mechanism offers a promising explanation of

several key observations: emulsion droplets don’t shear
thicken as friction is never present; strongly attractive
colloids generally don’t either, as it is never absent. The
onset stress scale P� for thickening varies strongly with
interactions but only weakly with ϕ.
These successes make it crucial to learn whether other

features, such as flow-curve hysteresis, can be explained
within the same framework. Also it is by no means clear
that the post-DST state is always fully jammed (flowable
only by fracture or particle deformation [1,22]). Instead,
homogeneously flowing states for rigid particles at ϕ < ϕm
could be governed by an S-shaped flow curve σðγ: Þ,
allowing hysteretic DST between a lower (lubricated)
and upper (frictional) branch at equal strain rate. Such
flow curves, as were seen in a model for Brownian colloids
that treats DST as a stress-induced glass transition [25,26],
can also explain the capillarity-induced bistability of a
millimetre-scale granule between solid and flowable states
[15]. Such granulation phenomena are poorly understood
and industrially important [15].
In this Letter we establish that S-shaped flow curves

do arise generically within the scenario of stress-induced
contact proliferation. Our work explains hysteresis of DST
flow curves, and shows DST to arise for ϕ < ϕm, creating
an important distinction between DST and complete jam-
ming [1,5,22].Also, our findings immediately generalize the
analysis of granulation in [15] from the academic case of
Brownian frictionless colloids to the industrial mainstream
of frictional non-Brownian suspensions.
Phenomenological analysis.—We consider a solvent of

viscosity η0 containing (non-Brownian, density-matched,
noninertial) hard frictional particles that interact with an
additional, finite repulsive force, whose range is very small
compared to the particle radius R. Its strength sets a
characteristic scale P� of particle pressure P that the system
can sustain without making frictional contacts [1]. For
p≡ P=P� ≪ 1, particles behave as though frictionless,
whereas for p ≫ 1 one recovers an assembly of frictional
grains. Note that for a fixed maximum force F� between
particles, P� ∼ F�R−2 [2].
We first assume that the jamming density ϕm (which may

depend on the microscopic friction coefficient m between
grains) is known.Without repulsions p ¼ ∞, and the single
parameter theory of [13] is recovered. This states that with
Iv ¼ η0γ

:
=P,

ϕ ¼ ΦrðIvÞ; σ=P ¼ μrðIvÞ; (1)

where subscript r denotes frictional or “rough” particles.
Functions Φr and μr were measured in [13] using a

semipermeable rheometer at controlled P. At fixed ϕ these
constitutive laws imply quasi-Newtonian scalings, P,
σ ∝ ηrðϕÞγ: . The suspension viscosity ηrðϕÞ diverges like
ðϕm − ϕÞ−βr , where βr ≃ 2; in contrast, σ=P, which like ηr
is a function of ϕ only, has no divergences [27].
A similar but distinct one-parameter theory must also

emerge when P� → ∞ so that lubrication films never break.
Given the infinitesimal range of our repulsions, this limit
should also describe the physics of frictionless or “smooth”
grains, m ¼ 0. Thus for this smooth case,

ϕ ¼ ΦsðIvÞ; σ=P ¼ μsðIvÞ. (2)

Once again P, σ ∝ ηsðϕÞγ: , but ηsðϕÞ now diverges as
ðϕ0 − ϕÞ−βs with ϕ0 ≃ ϕRCP ≃ 0.64. The exponent βs is
similar to βr ¼ 2, while μsðIvÞ has broadly similar proper-
ties to μrðIvÞ [24,28].
A crossover between the competing divergences of ηsðϕÞ

and ηrðϕÞ, controlled by p, can explain both CST for
ϕ < ϕm [22] and complete jamming (identified with DST
in [5,22]) for ϕ > ϕm. We next establish that a smooth
interpolation between these divergences also implies sig-
moidal, hysteretic flow curves (causing DST between two
flowing states of finite viscosity) for ϕ < ϕm.
For simplicity we assume βs;r ¼ 2, and interpolate the

divergences with a p-dependent jamming density ϕJðpÞ,

P ¼ λγ
: ðϕJðpÞ − ϕÞ−2 (3)

ϕJðpÞ ¼ ϕmf þ ϕ0ð1 − fÞ. (4)

Here λ is a constant and fðpÞ ∈ ½0; 1� is the fraction of
lubrication films that have ruptured to form frictional
contacts. This creates a two-parameter model,

ϕ ¼ ΦðIv; pÞ; σ=P ¼ μðIv; pÞ; (5)

where (3), (4) fix the singular terms in ΦðIv; pÞ. (Smooth
terms could be added to give realistic behavior at small ϕ
[13].) Further inputs are needed to find the stress ratio
μðIv; pÞ. However, since its limiting forms at p ¼ 0, ∞
[i.e., μr;sðIvÞ] are comparable nonsingular functions of ϕ
only, we first assume that μ ¼ μðϕÞ (but later identify some
effects of p dependence). Thus at any fixed ϕ the flow
curve σðγ: Þ has exactly the same shape as Pðγ: Þ.
Sigmoidal flow curves then arise, in a window of

densities just below ϕm, unless fðpÞ represents an unusu-
ally slow crossover, such that 1 − fðpÞ ≥ Oðp−1=2Þ at large
p; this is shown in the Supplemental Material [29].
Microscopics.—We next give a microscopic discussion

of contact network evolution that supports the form (4) for
the crossover. For frictionless particles under shear the
coordination of the network of contacts z approaches a
critical value zc at jamming [24]. Per particle, the number of
soft modes—collective displacement of particles that do
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not generate overlaps—vanishes with δz≡ zc − z, where
zc ¼ 2d in d dimensions. This causes the viscosity (and the
correlation length [30]) to diverge as [31]

P ¼ A0η0γ
:
δz−α; (6)

where A0 is a constant and α≃ 2.7. In frictional packings,
counting soft modes is slightly more involved; nonetheless,
these must be present for a system of hard particles to flow,
and it is found numerically that at the critical state ϕm the
number of soft modes is just zero [32]. Both facts suggest
that the loss of soft modes again causes the viscosity
divergence. We shall thus assume that Eq. (6) is valid for all
packings, so long as δz represents the actual number of soft
modes per particle. Theoretically the dependence
of δz on ϕ is not derived, but follows empirically from
the observed divergences for rough and smooth particles
(with constants Ar;s) as

δzr ¼ Arðϕm − ϕÞβr=α (7)

δzs ¼ Asðϕ0 − ϕÞβs=α. (8)

Any given packing has a definite z; but the number of
soft modes, δz, depends on the fraction, fðpÞ, of frictional
contacts. The problem of counting soft modes is somewhat
subtle for spherical particles, but we expect the rheology of
spherical and aspherical particles to display only minor
differences [33]. For aspherical grains the number of soft
modes simply decreases as the number of constraints
increases. The latter should increase linearly with the
number of frictional contacts, leading to

δz ¼ fðpÞδzr þ ð1 − fðpÞÞδzs. (9)

Equations (6)–(9) are closed. For simplicity we assume
(in qualitative accord with the empirical results) that
Ar ¼ As ¼ A, and α ¼ βr ¼ βs ¼ 2. This gives results
completely equivalent to (3), (4), with λ ¼ A0η0=A2.
(From now on we choose rescaled units where λ ¼ 1.)
As already made clear, details of the crossover function
fðpÞ are unimportant unless its decay to unity at large p is
very slow.
Results and discussion.—We next present numerical

results for a suitably bland choice, fðpÞ ¼ 1 − expð−pÞ.
The resulting flow curves Pðγ: Þ are shown in Fig. 1.
A key finding is the onset of DST at a packing fraction
ϕDST ≈ 0.55, distinctly below ϕm ¼ 0.58. As ϕ approaches
ϕDST from below, the slope of the flow curves become more
and more pronounced for p ∼ 1, implying a growing CST.
In our model, which neglects inertia, at higher γ

:
this crosses

over to a second Newtonian regime of high viscosity. At
ϕDST the slope is vertical, and for ϕDST < ϕ < ϕm, the flow
curve is sigmoidal, signaling hysteretic DST between upper
and lower branches of finite viscosity. The maximal extent

of hysteresis is delineated by two strain rates γ
:þ > γ

:−

where dγ
:
=dP ¼ 0. For ϕ → ϕm, we find γ

:− → 0. At this
point, the upper branch of the sigmoid disappears, signify-
ing complete jamming. For ϕ ≥ ϕm material is flowable
at low stress, but completely jammed for p ≫ 1. One may
still observe a discontinuous (and possibly hysteretic)
thickening at γ

:þ, but the thickened state must flow
inhomogeneously.
Figure 2 shows a phase diagram of the various flow

regimes. Inside the solid (blue) curve, there is hysteresis
and flow can depend on strain-rate history. Several features
of this diagram do not depend on the details of f:
(a) near ϕDST the hysteresis zone narrows to a cusp, with
γ
:þ − γ

:− ∝ ðϕ − ϕDSTÞ3=2, as expected from a saddle node
bifurcation; (b) on the approach to complete jamming,
γ
:− vanishes at least as ðϕm − ϕÞ2, and for f0ð0Þ > 0
as ðϕm − ϕÞ3 (modulo logarithmic corrections); (c) γ

:þ
vanishes only at ϕ0 beyond which homogeneous flow is
impossible even at infinitesimal γ

:
.

In the presence of noise, jumps can occur before the
relevant stability limit is reached: the hysteretic regime in
Fig. 2 represents the maximum possible. (Noise-induced
nucleation might recover a single-valued but discontinuous
curve as dγ

:
=dt → 0, but this limit could in turn prove

experimentally inaccessible [34].) Note also that at DST,
where Iv jumps downward and p up, one expects a jump in
the stress ratio μ ¼ σ=P which depends on the full form of
μðIv; pÞ. (However numerics support that μ weakly
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FIG. 1 (color online). Log-log plot of flow curve pðγ: Þ from
(3, 4) with λ ¼ 1, ϕ0 ¼ 0.64 and ϕm ¼ 0.58, for various ϕ. For
small ϕ, the behavior is near Newtonian. As ϕ increases, CST
becomes pronounced; its onset pressure p≃ 1 barely depends on
ϕ (unlike the corresponding strain rate). The dashed line is for
ϕ ¼ ϕDST. For ϕDST < ϕ < ϕm, DST is predicted with hysteresis
between two flowing, unjammed states. For ϕ > ϕm (dotted
lines) homogeneous flow can only occur at small strain rates.
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depends on friction at fixed ϕ [35], so this effect may be
small). The same applies to other stress ratios, such as those
involving normal stress differences.
In the inset of Fig. 2 the same phase diagram is plotted in

the ϕ, p plane. This might be relevant for experiments at
controlled P [13]. In principle these might allow one to
reach states inaccessible by any flow history at fixed ϕ,
such as those on the decreasing ‘middle’ branch of the flow
curve Pðγ: Þ. (For ϕ > ϕm this becomes the upper branch,
but is still decreasing.) However, the same branch is also
present for σðγ: Þ where its observation at fixed σ is normally
precluded by transverse shear banding [36]. Ignoring
particle migration (which is slow [16]) such banding might
be prevented if P is controlled locally (not just as an
average along the velocity gradient direction). It is unclear
to us whether the semipermeable rheometer of [13]
achieves this.

Finally we address the role played by the static friction
coefficient m of contacts. So long as this is a positive
constant, ϕm < ϕ0 and our model remains applicable; both
CST and DST are predicted. Since the jamming density ϕm
moves away from ϕ0 as m is increased [37], our model
predicts shear thickening to be more pronounced with high
friction particles than low ones—as reported experimen-
tally [5]. However an alternative but similar scenario might
now be obtained even without finite repulsions, by choos-
ing a stress-dependent contact friction mðpÞ that increases
with p ¼ P=P�.
Conclusion.—We have provided a phenomenological

model of shear thickening for frictional hard spheres with
finite short-range repulsions. Our analysis explains obser-
vations of hysteresis, and predicts that DST should begin at
an onset packing fraction, ϕDST < ϕm, below the jamming
point. Our result may be tested by careful experiments on
hysteresis (which should reveal DST to smoothly flowing
states) in a system of sufficiently hard particles, at fixed
volume fraction. DST (and indeed CST) should disappear
altogether if flow is measured at fixed particle pressure P
[13]. DST also will not be observable if the onset stress P�
exceeds the threshold τ=R for containment of particles
by rheometer menisci of surface tension τ [1,15]. In this
sense DST depends on boundary conditions as well as bulk
properties [1]; but for ϕ < ϕm, with fixed ϕ and no free
surfaces, it reverts to an intrinsic property of the bulk flow
curve σðγ: Þ. We have neglected gravity, Brownian motion,
particle deformability [38], and inertia, thus showing these
not to be prerequisites for shear thickening, but it would be
interesting to see how much they change the picture. For
instance, it may be that slight Brownian motion has effects
very similar to a short-range repulsion [39]. Also it is
possible that shear thickening by a related but inertial
mechanism [5] would arise in fast enough flows even for
purely hard spheres, whereas additional short-range repul-
sions introduce a second, noninertial mechanism operative
at lower strain rates.
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