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We consider the spatial dependence of filamentous protein self-assembly. Through studying the cases

where the spreading of aggregated material is dominated either by diffusion or by growth, we derive

analytical results for the spatial evolution of filamentous protein aggregation, which we validate against

Monte Carlo simulations. Moreover, we compare the predictions of our theory with experimental

measurements of two systems for which we identify the propagation as either growth or diffusion

controlled. Our results connect the macroscopic observables that characterize the spatial propagation of

protein self-assembly with the underlying microscopic processes and provide physical limits on spatial

propagation and prionlike behavior associated with protein aggregation.
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Spatial patterns in soft matter systems are commonly
generated through the growth of an aggregated phase
within a soluble phase [1–4], for instance, as diffusion
limited aggregation, or instead through the reaction and
diffusion of components that remain in solution [5–8].
While the spatial distributions in many systems are char-
acterized entirely by one of these two phenomena, the
formation of filamentous aggregates from normally homo-
geneous protein solutions is made complex by the fact that
it involves the growth within a soluble phase of structures
that can diffuse and multiply in number.

The self-assembly of protein molecules into fibrillar
structures is crucial for the generation of functional mate-
rials in nature, including the cytoskeleton [9], but it is also
associated with the aberrant aggregation of normally sol-
uble proteins into filamentous structures in the context of
many pathologies, including sickle cell anemia [10] and
amyloid disorders [11]. While phenomena involving
reaction, diffusion, and growth have been of broad interest
over the past several decades [1–8,12–14], biophysical
studies of protein aggregation have focused primarily on
the temporal evolution of the system concerned [9,15–17],
rather than the spatial dependence that is associated
with this phenomenon [18,19] and which is increasingly
recognized as playing a key role in the ‘‘prionlike’’ pathol-
ogy of various protein misfolding disorders [20–22].

The conversion of soluble proteins into linear polymers
involves the homogeneous (primary) nucleation of nascent
aggregates, which are able to grow by incorporating
further monomers at their ends [9]. Moreover, existing
aggregates often accelerate the rate of generation of further
aggregates through fragmentation [16] and heterogeneous
nucleation [15], processes that are collectively known as
secondary pathways [23]. Fragmentation refers to the

breakage of a filament to give two daughter aggregates,
whereas heterogeneous (secondary) nucleation occurs
when the surfaces of filaments catalyze the nucleation of
further aggregates from the soluble protein. In macroscopic
volumes, the overall polymerization reaction is the result
of many individual primary nucleation events and subse-
quent elongation and secondary processes that affect the
resulting aggregates [23]. In this case, an approach that
averages over the volume and neglects the spatial depen-
dence can be appropriate for describing this phenomenon
[17,23]. On a cellular scale, however, the aggregation
reaction can correspond to propagation from a single, or
a small number of, primary nucleation event(s) [19], which
are then amplified by elongation and secondary pathways.
In this context, therefore, it is vital to characterize the
spatial propagation from discrete homogeneous nucleation
events.
As a protein polymerization reaction progresses from a

single nucleation event, the resulting aggregates propagate
through space both due to the diffusion of aggregates
[Fig. 1(a)] and through the growth of aggregates at their
ends to occupy additional space [Fig. 1(c)]. Here, we probe
the spatial propagation of the protein self-assembly reac-
tion in the limits where each of these two mechanisms is
dominant, in order to reveal the link between the micro-
scopic processes underlying protein aggregation and the
macroscopic observables that characterize the spreading of
the aggregated material.
Propagation through diffusion.—When spatial propaga-

tion is controlled primarily by the diffusion of aggregates,
rather than by their growth, the master equation [24] for
the field fðt; r; jÞ, which describes the population length
distribution of aggregates consisting of j monomers, is
given as
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@fðt; r; jÞ
@t

¼ 2mkþfðt; r; j� 1Þ � 2mkþfðt; r; jÞ

� k�ðj� 1Þfðt; r; jÞ þ 2k�
X1

i¼jþ1

fðt; r; iÞ

þ k2m
n2�j;n2

X1
i¼n2

ifðt; r; iÞ þDðjÞr2fðt; r; jÞ;

(1)

wherem is the concentration of monomeric protein,DðjÞ is
the orientationally averaged diffusion coefficient of an
aggregate of j monomers, and kþ, k�, and k2 are the rate
constants for elongation, fragmentation, and secondary
nucleation, respectively. The first term in (1) accounts for
the formation of aggregates of size j through the elonga-
tion of aggregates of size j� 1, while the second term
describes the loss of aggregates of size j through their
elongation [9]. The third and fourth terms relate to the
loss or generation of an aggregate of size j through frag-
mentation [16], and the fifth term accounts for the second-
ary nucleation of an aggregate of size n2 at a rate
proportional to the surface area of the aggregates [15].

The final term describes the spatial diffusion of aggregates.
Primary nucleation is not included in (1) since we consider
here the propagation of aggregates following a single
primary nucleation event at the coordinate origin. We
consider the case where the monomer is not significantly
depleted such that m is constant in space and time [23].
The size-dependent orientationally averaged transla-

tional diffusion coefficient of a filamentous protein aggre-
gate is required in (1); for a high-aspect ratio rigid rod
of length L and diameter d, this is given by D ¼
kBT=ð6��RhÞ, where the effective hydrodynamic radius
Rh � �L for ��1 ¼ 2 logð2L=dÞ [25]. Since � depends
only logarithmically on the length L, the hydrodynamic
radius Rh varies approximately linearly, and the diffusion
coefficient D varies approximately inversely, with the fila-
ment length over a wide range of lengths.
The evolution of the lower moments of the length dis-

tribution of filaments, the number concentration Pðt; rÞ ¼P1
j¼nc

fðt; r; jÞ, and the mass concentration Mðt; rÞ ¼P1
j¼nc

jfðt; r; jÞ, which are the principal experimental

observables, are determined from the master equation (1)
through summation [16]. For the mass concentration, this
yields [26–28]

@Mðt; rÞ
@t

¼ ��Pðt; rÞ þ �D�r2Pðt; rÞ; (2)

where the parameter � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkþðk� þ k2m

n2Þp
is the

proliferation rate that emerges in the spatially homoge-
neous case [16,24]. Similarly, the unitless parameter � ¼
2kþm=� has the physical interpretation as the average po-
lymerization number of filaments that emerges from (1) after
times t � ��1 when the spatial dependence is neglected
[29]. Indeed, even when diffusion is active, the local length
distribution at each point will approach that given in the
spatially homogeneous case [29], under the condition that
the length distribution reaches equilibrium over a time
scale much shorter than that in which aggregates diffuse a
distance comparablewith their size, i.e., ��1 � �D�1ð��Þ2.
This condition results in the approximation Pðt; rÞ �
Mðt; rÞ=�, under which (2) then describes reaction-
diffusion growth [30]. The effective diffusion coefficient in

(2) is �D ¼ ½kT=ð6�� ���Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk� þ k2m
n2Þ=ð2kþmÞp

, where
� is approximated using the mean length L ¼ �� to yield
���1 ¼ 2 logð2��=dÞ, and the length of an aggregate of size
j is given as L ¼ �j for an extension � corresponding to
each monomer. Since the rate constants for fragmentation
and secondary nucleation enter into the analysis additively in
(2), from here on we replace ðk� þ k2m

n2Þ with k2m
n2 and

note that the case of fragmenting filaments is accounted for
when k2 ¼ k� and n2 ¼ 0 [24].
In the present case of propagation from a single nucleus

at the coordinate origin, the resulting aggregation process
cannot be detected until the initial nucleus has grown and
multiplied to reach an experimental detection threshold.
The spatial distribution of aggregates when detection is
possible will then be centered on a location r0 that

(a) (c)

(b) (d)

FIG. 1. (a),(c) Schemas of the two modes of spatial propaga-
tion considered here. In (a), aggregates spread primarily through
diffusion while they grow through elongation and multiply
through a secondary pathway (illustrated as filament fragmenta-
tion). In (c), the aggregates instead spread primarily through
their growth, as they multiply through a secondary pathway
(illustrated as secondary nucleation). The fragmentation and
secondary nucleation events are highlighted with stars. (b),
(d) Comparison of the corresponding analytical results (solid
lines) and the results of Monte Carlo simulations [28] (data
points) for the concentration profiles at increasing times. Panel
(b) shows the linear number density

R
dy

R
dzP from (3) for

diffusion, and panel (d) shows the radial density 4�r2P from (7)
for radial spreading through growth. The insets show the farthest
position where a threshold density, � ¼ 5 �m�1, is reached in
the numerical concentration profiles (data points); the front
velocity is given by the slope and compared to the analytical
results (solid lines) derived in the text. The parameters are kþ ¼
9� 104 M�1 s�1, m ¼ 5 mM, k� ¼ k2m

n2 ¼ 2� 10�8 s�1 in
(b) and (d) respectively, giving a ratio S ¼ 2:2 of the diffusion to
growth controlled propagation velocities. The prefactors were
� ¼ 1 �A, � ¼ 0:5 mPa s, d ¼ 8 nm, T ¼ 330 K.
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corresponds to a stochastic spatial offset resulting from the
diffusion of the initial aggregate(s) for times t < t0 � ��1

before significant multiplication. The solution for
the reaction-diffusion dynamics described by (2) is then
given by

Pðtþ t0; rþ r0Þ ¼
expð�t� r2

4 �Dt
Þffiffiffiffiffiffiffiffiffiffiffiffi

4� �Dt
p : (3)

The resulting behavior is dominated by the exponential
factor; the spatial position at which an arbitrary detection

threshold level, P ¼ �, is reached is given as r� ¼ ut½1�
4 �D logð� ffiffiffiffiffiffiffiffiffi

4 �Dt
p Þ=ðu2tÞ�1=2 ���!t�1ut for the velocity of the reac-

tion front u ¼ 2
ffiffiffiffiffiffiffi
�D�

p
, i.e., a Fisher wave [30]. Combining

this result with the identification of �D and � as functions of
the microscopic rate constants reveals that in this case the
reaction front propagates outwards from the origin with a

velocity u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2m

n2kBT=ð3��~��Þp
, which is dependent

only on the rate of the secondary process and not on the
elongation rate of the filaments. Furthermore, for the
breakage dominated case (k2 ¼ k�, n2 ¼ 0), the wave
velocity is concentration independent. The analytical
forms for the concentration profiles (3) are compared
with numerical data from Monte Carlo simulations of
this process in Fig. 1(b), demonstrating the accuracy of
the analytical approximation.

Propagation through growth.—Since the self-assembly
reaction also involves mass transport, it is crucial to con-
sider the converse limit where spreading is dominated by
the movement of filament ends upon aggregate growth.
Specifically, we consider the radial growth of a spherical
filament network wherein individual aggregates are unable
to diffuse. This situation is analogous to the growth of
domains of aggregated hemoglobin S in sickle cell disease,
which has been studied by Ferrone and co-workers [18].
Following this approach, we describe the state of the
system with three variables: the local polymer mass con-
centration Mðt; rÞ and the local concentrations of filament
ends E�ðt; rÞ pointing towards �r (radial outward or
inward). The time evolution of the number of ends in
each direction due to growth can be obtained by noting
that, within a spherical shell of thickness dr,

4�r2dr�E�
elongationðt;rÞ¼	4�r2E�ðt;rÞvdt�4�ðr�drÞ2

�E�ðt;r�drÞvdt; (4)

where v ¼ 2mkþ�=� is the average projected elongation
velocity of the filament assuming random directionality of
growth [18]; the factor of 2=� originates from the average
projection hcosð�Þi ¼ 2=�. Taking the limit dr ! 0,
dt ! 0 of (4), and adding to this case the effect of second-
ary pathways �E�

nucleationðrÞ ¼ k2m
n2M, yields the partial

differential equation for the evolution of the number of
filament ends pointing in each direction:

@E�ðt;rÞ
@t

¼	2mkþ�
�r2

@

@r
ðr2E�ðt;rÞÞþk2m

n2Mðt;rÞ: (5)

Since there is no significant diffusion of aggregates, the
mass concentration evolves as @tM ¼ mkþðEþ þ E�Þ ¼
2Pmkþ [(2) with �D ¼ 0], where we have identified the
aggregate number concentration with half the number of
filament ends, P ¼ ðEþ þ E�Þ=2. Taking the sum and the
difference of the two expressions in (5) for E� gives
coupled equations for (Eþ þ E�) and (Eþ � E�); elimi-
nating the latter term through differentiation [31], and
substituting for the time evolution of the mass concentra-
tion on the right-hand side, gives a decoupled equation for
the number concentration P:

@2

@t2
Pðt; rÞ ¼ v2

r2
@2

@r2
ðr2Pðt; rÞÞþ �2Pðt; rÞ; (6)

with the effective multiplicative rate � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþk2mn2þ1

p
, as

in (2). Equation (6) is a Klein-Gordon equation in r2P with
an imaginary mass term, also known as the modified
telegrapher’s equation. The solution corresponding to a
single aggregate initially at the origin is

Pðtþ t0;rþr0Þ¼ 1

2���

vt

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2v2�r2

p I1

�
�

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2v2�r2

p �
;

(7)

for r < vt and P ¼ 0 for r > vt; the nth modified Bessel
function of the first kind is denoted In. Offsets in space
and time are added as for (3). Equation (7) may then be
integrated to yield the mass concentration:

Mðtþ t0; rþ r0Þ ¼ 1

4��r2
I0

�
�

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2v2 � r2

p �
: (8)

The velocity associated with the reaction front, v ¼
2mkþ�=�, depends in this case only on the rate of elon-
gation, and not on the rate of secondary nucleation. The
accuracy of the analytical results is verified by means of
numerical simulations, shown in Fig. 1(d).
Experimental realizations of propagation through diffu-

sion and growth.—We apply the results derived in this
Letter to two experimental situations, both involving the
aggregation of a representative amyloid forming protein,
insulin, which has been found to involve homogeneous
nucleation, elongation, and filament fragmentation under
defined conditions [16,28]. We utilize microfluidic tech-
niques which allow us to directly observe the spatial
propagation of aggregates resulting from discrete homoge-
neous nucleation events [28]. We focus first on conditions
where both of the propagation modes derived in this Letter
are accessible, by considering the propagation of insulin
aggregates growing from single nuclei confined in high-
aspect ratio microdroplets [19], Figs. 2(a) and 2(b). We
then study aggregation under conditions where diffusion is
severely disfavored, by investigating the growth of spher-
ulites [32]; in these higher-order spherical structures,
which nucleate preferentially in contact with the micro-
channel walls, the diffusion of insulin filaments is signifi-
cantly hindered, Figs. 2(c) and 2(d).
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The progression of representative experiments of each
type is shown in Figs. 2(a) and 2(c). The rate of spreading
between consecutive images in both cases is approximately
constant, implying constant propagation velocities.
Quantitative analyses of the propagation velocities from sev-
eral series of experimental images are shown inFigs. 2(b) and
2(d), verifying in all cases that the propagation velocities
are constant in time, as predicted by (3) and (7). It is
interesting to note that the measured propagation velocities
shown in Fig. 2(b), where both diffusion and growth occur,
are 2 orders of magnitude greater than in Fig. 2(d), where
propagation is through growth and there is minimal diffu-
sion; this observation confirms that diffusion, rather than
growth, is primarily responsible for the propagation of
insulin polymerization shown in Figs. 2(a) and 2(b).

The analytical results for the velocity of the reaction
front in the two cases discussed in this Letter have strik-
ingly different dependencies on the microscopic rate con-
stants of aggregation. For spreading through diffusion, the
velocity depends only on the rate constant of the secondary
pathway and not on the elongation rate constant; a pre-
cisely converse dependency emerges for propagation
through growth. An intriguing prediction of these results,
therefore, is that if one of these two rate constants is
altered, the front velocity will only be affected either in a
system with a dominant diffusive mode of propagation or
in a system with growth controlled propagation.

In order to test this prediction, experiments under both
conditions in Fig. 2 were carried out at two different con-
centrations of sodium chloride (0 mM, 10 mM). This differ-
ence in salt concentrations is known to affect the elongation
rate [33] but is not expected to affect the rate of fragmenta-
tion, implying that only the propagation velocity for spread-
ing dominated by growth should be affected. The data for the
front velocities in Fig. 2 show clearly that under conditions
where propagation is primarily through diffusion, Fig. 2(b), a
change in salt concentration has no detectable effect on the
velocity, whereas under the conditions where propagation
occurs through growth, Fig. 2(d), an increase in salt concen-
tration results in a very significant change in the velocity.
Moreover, the analytical result for the conditions where the
velocity is limited by growth indicates that the ratio of the
velocities measured in Fig. 2(d) should be equal to the ratio
of the elongation rate constants; the ratio of the slopes in
Fig. 2(d) is approximately 1.7, which is consistent with
previous values of the change in the elongation rate for
insulin due to a 10 mM increase in ionic strength on a
background ionic strength of 50 mM [33].
A dimensionless parameter, S, that quantifies whether

propagation is driven by diffusion (S > 1) or growth (S < 1)
can be constructed as the ratio of the respective velocities:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2m

n2�2kBT�

6k2þ�~��3

s
; (9)

where values of the prefactors �, �, ��, T for the growth

of amyloid fibrils [34] result in S � ð107s�1=2Þk1=22 �
mn2=2�1=kþ. In the case of insulin, we have previously
determined the rate constants [16,34,35] (n2 ¼ 0,

k2 ¼ k� � 10�8 s�1, kþm � 10 s�1 [36]), resulting inS �
ð107s�1=2Þk1=2� =ðkþmÞ � 100, in excellent agreement with
the ratio of the diffusion (� 5 �mmin�1) to the growth
(� 0:05 �mmin�1) controlled velocitiesmeasured in Fig. 2.
It is interesting to speculate, therefore, that diffusive

propagation may be a key mode of spreading for a range
of situations involving the formation and proliferation of
amyloid fibrils, including those related to disease. In agree-
ment with this idea, it is increasingly apparent that the
spatial spreading of protein aggregation processes from
cell to cell in the central nervous system, initially established
only for prion conditions, is more generally associated with
the onset and progression of a wide class of neurodegener-
ative disorders, including Alzheimer’s and Parkinson’s
diseases [20,37–40]. In particular, low molecular weight
aggregates of the amyloid-� (A�) peptide, sometimes
called A�-related diffusible ligands, are implicated in the
pathogenesis of Alzheimer’s disease [41]. The ability to
sustain spatial propagation through diffusion may be
enhanced for these low molecular weight species since
they are commonly observed to have low growth rates
relative to elongated fibrils [42–44]. Interestingly, since
our data show that secondary pathways control the velocity
of diffusive propagation, these findings suggest that such

(a)

(b) (d)

(c)

FIG. 2. Representative images of the progression over time of
experiments [28] involvingdiffusion (a) and growth (c) dominated
propagation of insulin aggregation, as described in the text. In both
cases, aggregation was monitored by means of the fluorescent
probe thioflavin T, which has a high affinity for the amyloid
scaffold [16]. (a) Single microdroplet and (c) five spherulites.
(b),(d) Corresponding measurements of the velocity of the reac-
tion fronts for these systems at two different concentrations of
NaCl (black, 0 mM; gray, 10 mM; both in the presence of 50 mM
HCl). Note that the velocity in (a) and (b) is much greater than in
(c) and (d), consistent with the fact that the propagation in (a) and
(b) is controlled by diffusion and not growth. In addition, note that
the growth of a dense crystal phase would not result in a volume
filling process as observed in (a), since only a small volume
fraction, �3% in our experiments, is protein.
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processes, which are already thought to be important in
many cases for generating low molecular weight species
[16,45],may also be crucially important for controlling their
spatial spreading and associated prionlike behavior [20–22].
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[8] J. S. Bois, F. Jülicher, and S.W. Grill, Phys. Rev. Lett. 106,

028103 (2011).
[9] F. Oosawa and S. Asakura, Thermodynamics of the

Polymerization of Protein (Academic Press, New York, 1975).
[10] F. A. Ferrone, Microcirculation 11, 115 (2004).
[11] F. Chiti and C.M. Dobson, Annu. Rev. Biochem. 75, 333

(2006).
[12] A. J. C. Ladd, H. Gang, J. X. Zhu, and D.A. Weitz, Phys.

Rev. Lett. 74, 318 (1995).
[13] R.C. Ball andE. Somfai, Phys.Rev. Lett. 89, 135503 (2002).
[14] A. Menshutin, Phys. Rev. Lett. 108, 015501 (2012).
[15] F. A. Ferrone, J. Hofrichter, and W.A. Eaton, J. Mol. Biol.

183, 611 (1985).
[16] T. P. J. Knowles, C. A.Waudby,G. L.Devlin, S. I. A.Cohen,

A. Aguzzi, M. Vendruscolo, E.M. Terentjev, M. E.
Welland, and C.M. Dobson, Science 326, 1533 (2009).

[17] S. I. A. Cohen, M. Vendruscolo, C.M. Dobson, and T. P. J.
Knowles, J. Mol. Biol. 421, 160 (2012).

[18] H. X. Zhou and F. A. Ferrone, Biophys. J. 58, 695 (1990).
[19] T. P. J. Knowles, D. A. White, A. R. Abate, J. J. Agresti,

S. I. A. Cohen, R. A. Sperling, E. J. D. Genst, C.M.
Dobson, and D.A. Weitz, Proc. Natl. Acad. Sci. U.S.A.
108, 14 746 (2011).

[20] A. Aguzzi and J. Falsig, Nat. Neurosci. 15, 936 (2012).
[21] M. Jucker and L. C. Walker, Ann. Neurol. 70, 532 (2011).
[22] M. Jucker andL.C.Walker,Nature (London)501, 45 (2013).
[23] F. Ferrone, Methods Enzymol. 309, 256 (1999).
[24] S. I. A. Cohen, M. Vendruscolo, M. E. Welland, C.M.

Dobson, E.M. Terentjev, and T. P. J. Knowles, J. Chem.
Phys. 135, 065105 (2011).

[25] M.Doi and S. F. Edwards,The Theory of PolymerDynamics
(Oxford University Press, Oxford, England, 1986).

[26] The diffusion coefficient is of the form D� j�1 logj; in
the moment equation for M ¼ P

jfðt; r; jÞ only the weak
logj dependency remains and hence approximating
logj � log� leads to a good approximation.

[27] Terms describing the direct effect of nucleation on the
aggregate mass are neglected in Eq. (2) since the major
role of nucleation is to generate additional sites for elon-
gation [23,24]. Were the opposite true, large aggregates
would not form.

[28] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.098101 for a
detailed derivation of Eq. (2) and additional
experimental and simulation details.

[29] S. I. A. Cohen, M. Vendruscolo, C.M. Dobson, and
T. P. J. Knowles, J. Chem. Phys. 135, 065107 (2011).

[30] P. Grindrod, The Theory and Applications of Reaction-
Diffusion Equations (Oxford University Press, Oxford,
England, 1996).

[31] Taking the difference between the expressions for E� in
Eq. (5) yields @tðEþ�E�Þ¼�2mkþ�@rðr2½EþþE��Þ=
ð�r2Þ, whereas adding the expressions for E� then differ-
entiating with respect to time yields @ttðEþ þ E�Þ ¼
�2mkþ�@rfr2@tð½Eþ � E��Þg=ð�r2Þ þ 2k2m

n2@tM.
Eliminating @tðEþ � E�Þ, and substituting @tM ¼
2mkþP, results in Eq. (5).

[32] M. R.H. Krebs, C. E. Macphee, A. F. Miller, I. E. Dunlop,
C.M. Dobson, and A.M. Donald, Proc. Natl. Acad. Sci.
U.S.A. 101, 14 420 (2004).

[33] A. K. Buell, P. Hung, X. Salvatella, M. E. Welland, C.M.
Dobson, and T. P. J. Knowles, Biophys. J. 104, 1116 (2013).

[34] J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. Macphee,
and M. E. Welland, Proc. Natl. Acad. Sci. U.S.A. 103,
15 806 (2006).

[35] A. K. Buell, J. R. Blundell, C.M. Dobson, M. E. Welland,
E.M. Terentjev, and T. P. J. Knowles, Phys. Rev. Lett. 104,
228101 (2010).

[36] At the high concentration, 5 mM, of insulin used in our
experiments, the elongation rate no longer varies linearly
with the monomer concentration as kþm but rather ap-
proaches a saturated rate, which is independent of the
monomer concentration, corresponding to the time scale
for rearrangement when a monomer attaches to a fibril end
[35]. The limiting rate is used in this calculation.

[37] J.-Y. Li et al., Nat. Med. 14, 501 (2008).
[38] K. C. Luk, V. Kehm, J. Carroll, B. Zhang, P. O’Brien, J. Q.

Trojanowski, and V.M.-Y. Lee, Science 338, 949 (2012).
[39] P. Brundin, R. Melki, and R. Kopito, Nat. Rev. Mol. Cell

Biol. 11, 301 (2010).
[40] S.-J. Lee, P. Desplats, C. Sigurdson, I. Tsigelny, and E.

Masliah, Nat. Rev. Neurol. 6, 702 (2010).
[41] C. Haass and D. J. Selkoe, Nat. Rev. Mol. Cell Biol. 8, 101

(2007).
[42] N. Cremades et al., Cell 149, 1048 (2012).
[43] T. R. Serio, A.G. Cashikar, A. S. Kowal, G. J. Sawicki, J. J.

Moslehi, L. Serpell, M. F. Arnsdorf, and S. L. Lindquist,
Science 289, 1317 (2000).

[44] J. Lee, E. K. Culyba, E. T. Powers, and J.W. Kelly, Nat.
Chem. Biol. 7, 602 (2011).

[45] S. I. A. Cohen, S. Linse, L.M. Luheshi, E. Hellstrand,
D. A. White, L. Rajah, D. E. Otzen, M. Vendruscolo,
C.M. Dobson, and T. P. J. Knowles, Proc. Natl. Acad.
Sci. U.S.A. 110, 9758 (2013).

PRL 112, 098101 (2014) P HY S I CA L R EV I EW LE T T E R S
week ending

7 MARCH 2014

098101-5

http://dx.doi.org/10.1103/PhysRevLett.54.1043
http://dx.doi.org/10.1103/PhysRevLett.54.1043
http://dx.doi.org/10.1103/PhysRevLett.66.1978
http://dx.doi.org/10.1103/PhysRevLett.66.1978
http://dx.doi.org/10.1103/PhysRevLett.96.018104
http://dx.doi.org/10.1103/PhysRevLett.105.120601
http://dx.doi.org/10.1103/PhysRevLett.60.871
http://dx.doi.org/10.1103/PhysRevLett.96.188103
http://dx.doi.org/10.1103/PhysRevLett.96.188103
http://dx.doi.org/10.1103/PhysRevLett.106.188303
http://dx.doi.org/10.1103/PhysRevLett.106.188303
http://dx.doi.org/10.1103/PhysRevLett.106.028103
http://dx.doi.org/10.1103/PhysRevLett.106.028103
http://dx.doi.org/10.1080/10739680490278312
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
http://dx.doi.org/10.1103/PhysRevLett.74.318
http://dx.doi.org/10.1103/PhysRevLett.74.318
http://dx.doi.org/10.1103/PhysRevLett.89.135503
http://dx.doi.org/10.1103/PhysRevLett.108.015501
http://dx.doi.org/10.1016/0022-2836(85)90175-5
http://dx.doi.org/10.1016/0022-2836(85)90175-5
http://dx.doi.org/10.1126/science.1178250
http://dx.doi.org/10.1016/j.jmb.2012.02.031
http://dx.doi.org/10.1016/S0006-3495(90)82412-7
http://dx.doi.org/10.1073/pnas.1105555108
http://dx.doi.org/10.1073/pnas.1105555108
http://dx.doi.org/10.1038/nn.3120
http://dx.doi.org/10.1002/ana.22615
http://dx.doi.org/10.1038/nature12481
http://dx.doi.org/10.1016/S0076-6879(99)09019-9
http://dx.doi.org/10.1063/1.3608916
http://dx.doi.org/10.1063/1.3608916
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098101
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098101
http://dx.doi.org/10.1063/1.3608918
http://dx.doi.org/10.1073/pnas.0405933101
http://dx.doi.org/10.1073/pnas.0405933101
http://dx.doi.org/10.1016/j.bpj.2013.01.031
http://dx.doi.org/10.1073/pnas.0604035103
http://dx.doi.org/10.1073/pnas.0604035103
http://dx.doi.org/10.1103/PhysRevLett.104.228101
http://dx.doi.org/10.1103/PhysRevLett.104.228101
http://dx.doi.org/10.1038/nm1746
http://dx.doi.org/10.1126/science.1227157
http://dx.doi.org/10.1038/nrm2873
http://dx.doi.org/10.1038/nrm2873
http://dx.doi.org/10.1038/nrneurol.2010.145
http://dx.doi.org/10.1038/nrm2101
http://dx.doi.org/10.1038/nrm2101
http://dx.doi.org/10.1016/j.cell.2012.03.037
http://dx.doi.org/10.1126/science.289.5483.1317
http://dx.doi.org/10.1038/nchembio.624
http://dx.doi.org/10.1038/nchembio.624
http://dx.doi.org/10.1073/pnas.1218402110
http://dx.doi.org/10.1073/pnas.1218402110

