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A few years ago it was shown that some systems that have very similar local structure, as quantified by
the pair correlation function, exhibit vastly different slowing down upon supercooling. Recently, a more
subtle structural quantity, the so-called “point-to-set” length, was found to reliably correlate with the
average dynamics. Here we use computer simulations to examine the behavior of fluctuations around the
average dynamics, i.e., dynamic heterogeneity. We study five model glass-forming liquids: three model
liquids used in previous works and two additional model liquids with finite range interactions. Some of
these systems have very similar local structure but vastly different dynamics. We show that for all these
systems the spatial extent and the anisotropy of dynamic heterogeneity have the same correlation with the
average dynamics. This result complements a recent experimental finding of a universal correlation
between the number of correlated particles and the apparent activation enthalpy.
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Upon supercooling, universal phenomena are observed
in seemingly unrelated glass-forming systems. Similarly,
glass transition theories predict universal relationships
between different static and dynamic quantities. Some of
the relationships predicted by the theories are difficult to
verify experimentally but they can be tested in computer
simulations. These tests can help to differentiate between
different theories. Because of the large computational
resources required, simulations often examine one rela-
tively simple model system. However, this does not
establish that the relationships between different static or
dynamic quantities are truly universal. Here, we examine
universal features of dynamic heterogeneity, i.e., fluctua-
tions around the average dynamics.
Our study is inspired by a reevaluation of the van der

Waals picture [1] of the liquid state in the context of
supercooled liquids’ dynamics. Within this picture the
liquid’s local structure, as quantified by the pair correlation
function, is primarily determined by the repulsive part of the
interparticle potential. Importantly, it was believed (with
somewhat limited simulational [2,3] and theoretical [4]
support) that the local structure, and thus the repulsive part
of the potential, also determines the liquid’s dynamics.
Therefore, it was surprising when Berthier and Tarjus [5]
showed that two standard model liquids, which differ only
by the presence of the attractive part of the potential and
have very similar local structure, exhibit vastly different
viscous slowingdownuponapproaching theglass transition.
Subsequently, Pedersen et al. [6] complicated the picture by
finding a system with a purely repulsive potential, the same
local structure, and the same dynamics as the model liquid
with both repulsive and attractive interactions.
More recently, Hocky et al. [7] investigated a different,

more subtle, static quantity, the so-called “point-to-set”

length [8] in the systems considered by Berthier and Tarjus,
and Pedersen et al. Hocky et al. found that this length
can have different values for systems with very similar
local structure, but it correlates very well with the average
dynamics and shows universal features for all the systems
studied.
We present results of an extensive computer simulation

study that tests the universality of fluctuations around
the average dynamics, i.e., dynamic heterogeneity. First,
we investigate two standard quantities used to characterize
dynamic heterogeneity, the four-point susceptibility, which
measures the overall strength of the heterogeneity, and
the dynamic correlation length, which measures the spatial
extent of the heterogeneity. In addition, we calculate
quantities that are sensitive to the anisotropy of dynamic
heterogeneity. Investigation of the latter quantities has been
prompted by recent experiments of Zhang et al. [9], who
studied two glassy colloidal systems that differed by the
presence of an attractive part of the effective colloid-colloid
potential. They found profound dependence of the shape
of the clusters of fast particles on the presence of the
attractions.
For large enough supercooling, we find that all quanti-

tative characteristics of dynamic heterogeneity for all
systems investigated have the same dependence on the
relaxation time that characterizes the average dynamics.
We divide the systems we studied into two groups. The

systems in the first group (whichwere also studied byHocky
et al.) are derived from the Kob-Andersen binary Lennard-
Jones mixture [10–12]. We simulated the standard Kob-
Andersen (KA) mixture, the Weeks-Chandler-Andersen
(WCA) truncation [13,14] of the standard mixture, and a
system with an inverse power law (IPL) potential [6]. All
three systems have similar pair-correlation functions at the
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same temperature. However, only the KA and IPL mixtures
exhibit the same temperature dependence of the relaxation
time [5,6]. We studied dynamic properties of these systems
as a function of temperature at a fixed volume using
Newtonian dynamics [15].
The second group consists of two 50∶50 mixtures of

spherical particles with the same size ratio. The first system
is a hard sphere (HARD) system, where the particle
positions are updated using Monte Carlo dynamics with
local moves [16,17]. The second system is a repulsive
harmonic sphere (HARM) system [18], which we studied
using Newtonian and Brownian dynamics. The control
parameter for the HARD system is the volume fraction,
while it is the temperature for the HARM system [15].
To find a correlation between dynamic heterogeneity and

the average dynamics in systems with different potentials,
control parameters, and underlying microscopic dynamics,
we define a rescaled relaxation time. To this end we use
a hallmark property of supercooled liquids: violation of
the Stokes-Einstein relation. In the normal liquid state the
Stokes-Einstein relation holds and the self-diffusion coef-
ficient is inversely proportional to the relaxation time,
D ∼ τ−1α . The violation of this relation in supercooled
liquids is frequently associated with the appearance of
dynamic heterogeneity [19,20]. We define a rescaled
relaxation time in such a way that all systems we study
deviate from the Stokes-Einstein relation at the same
rescaled relaxation time [21].
To rescale the relaxation time, we used theHARMsystem

as a reference. For the remaining systems, we rescaled the
relaxation time τα by a constant τ0 so that these systems
deviate from the Stokes-Einstein relation at the same τα=τ0.
This procedure results in τ0 ≈ 1=15 for the KA, WCA, and
IPL systems [22], and τ0 ≈ 70 for the hard-sphere system.
By adjusting τ0 and examining the scaling, we estimate an
approximate 20%uncertainty in τ0. Unexpectedly, we found
that by plotting Dk20τ0 as a function of τα=τ0 we obtain a
reasonable collapse of all the data, see Fig. 1.
We note that a crossover time scale (defined by the

crossing point of two power-law relations showed in Fig. 1)
is approximately equal to τsα ¼ 303τ0 � 65τ0. This time
scale corresponds to a temperature Ts (or volume fraction
ϕs) located between the onset of glassy dynamics and the
mode-coupling transition temperature [23].
To obtain the four-point susceptibility and the dynamic

correlation length we examine a four-point structure factor
defined in terms of overlap functions pertaining to indi-
vidual particles,

Sov4 ðq; tÞ ¼ 1

N

�X
n;m

wnða; tÞwmða; tÞeiq·½rnð0Þ−rmð0Þ�
�
: (1)

Here the overlap function wnða; tÞ¼Θ½a− jrnðtÞ−rnð0Þj�,
where ΘðxÞ is Heaviside’s step function. Sov4 ðq; tÞ is the
structure factor of the particles that move less than a

distance a over a time t, and it is used to characterize
the size of clusters of slow particles. We calculate this
structure factor at time τovα , which is defined in terms of
the average overlap function [24]. We use the previously
described procedure [16,25] to calculate the four-point
susceptibility χov4 and the dynamic correlation length ξov4 .
First, we investigate the relationship between these two

quantities. In Fig. 2 we show χov4 =K plotted versus ξov4 . Here
K is a system dependent scaling constant. For ξov4 > 2.6 we
find that χov4 grows as ðξov4 Þ3 for all systems investigated.
We note that ξov4 ¼ 2.6 when the system’s relaxation time is
τsα, Fig. 3. We recall that the random-first-order transition
(RFOT) approach predicts compact dynamically correlated
regions for temperatures below the mode-coupling
transition temperature [26]. We find χov4 ∝ ðξov4 Þ3, which
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FIG. 1. Rescaled self-diffusion coefficient Dk20τ0 versus re-
scaled relaxation time τα=τ0. The lines are fits of the HARM data
to D ∼ τ−1α for T ≥ 12 and to a fractional Stokes-Einstein relation
D ∼ τ−λα for T ≤ 7. These fits are equal at τsα=τ0.
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FIG. 2. A rescaled susceptibility χov4 =K versus ξov4 . K ¼ 1.55
for the KA, WCA, and IPL systems, K ¼ 0.83 for the HARD
system, and K ¼ 1 for the HARM system.
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indicates compact clusters of slow particles, starting from
the crossover temperature Ts (or volume fraction ϕs) [27].
We now examine the correlation between the dynamic

correlation length ξov4 calculated at τovα and τovα =τ0. Note that
to define a rescaled time scale we use the values of τ0 which
were determined before by analyzing the relation between
D and τα. This is justified since the temperature (or volume
fraction) dependence of τovα and τα is very similar. We note
that the results for all systems investigated collapse onto
the same curve when plotted as ξov4 versus τovα =τ0, Fig. 3.
While we anticipated having to rescale ξov4 , this does not
seem necessary for these systems. This collapse is similar
to the observation of Fragiadakis et al. [28], who used an
approximation for χ4 proposed by Berthier et al. [29], to
show that the number of dynamically correlated molecules
only depends on the relaxation time. We conclude that the
spatial extent of dynamic heterogeneity correlates very well
with the average dynamics when the average dynamics is
rescaled relative to the point at which the Stokes-Einstein
relation is violated.
We compare our results to three theoretical scenarios.

The relationships between the dynamic correlation length
and the relaxation time obtained from these scenarios are
showed as lines in Fig. 3. We find that a power law
relationship between ξov4 and τovα (dash-dotted line) obtained
from a mode-coupling-like approach [30–32] is a poor
description of the data for more than about a decade of
slowing down. Next, we find that a logarithmic relationship
ξov4 ∼ ln ðτovα Þ1=ζ, inspired by an Adam-Gibbs–like [33] or
a RFOT theory [34,35], describes well the initial slowing
down with ζ ¼ 1 (dotted line) but at longer relaxation times

ζ ¼ 2=3 (dashed line) provides a better fit. Finally, the
relation inspired by the facilitation picture, lnðξ4Þ ¼
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðBτovα =τ0Þ

p þ C (solid line) [36], is also compatible
with the data. In principle, a more detailed analysis of the
existing data may be able to distinguish between the latter
two approaches. We note that the theoretical scenarios are
nearly indistinguishable over a large range of ξ4 versus
τovα =τ0. The most direct comparison would be enabled by
extending the range of relaxation times by some 2 orders of
magnitude.
Figure 2 indicates a change in the spatial organization of

dynamic heterogeneity. This fact, together with the exper-
imental finding of Zhang et al. [9], prompted us to examine
in some detail the shape of dynamic heterogeneity. To this
end we study a four-point structure factor defined in terms
of microscopic self-intermediate scattering functions per-
taining to different particles,

S4ðk;q; tÞ ¼
1

N

�X
n;m

F̂nðk; tÞF̂mðk; tÞeiq·½rnð0Þ−rmð0Þ�
�
.

(2)

Here F̂nðk; tÞ ¼ cosfk · ½rnðtÞ − rnð0Þ�g is the microscopic
self-intermediate scattering function. Its ensemble average
is the self-intermediate scattering function. A similar four-
point structure factor was examined in Ref. [37].
The four-point structure factor S4ðk;q; tÞ is sensitive to

dynamics along the wave vector k. A slow spatial decay
of correlations of the dynamics along k would be revealed
in the small q values of S4ðk;q; tÞ. The spatial decay of
correlations of the dynamics along (perpendicular to) the
direction of the initial separation vector Δrnmð0Þ ¼ rnð0Þ −
rmð0Þ is measured by examination of S4ðk;q; tÞ where k
and q are parallel (perpendicular). We calculate S4ðk;q; tÞ
at a fixed angle θ between k and q. We determine ξθ4 by
fitting S4ðk;q; tÞ using the same procedure described in
Refs. [16,25,38].
Shown in Fig. 4 is ξθ4 for θ ¼ 0 and θ ¼ π=2 as a function

of τα=τ0 [39]. The results for all the systems follow the
same trend. For the first 1.5 decades of slowing down
correlations along the particles separation vector grow
faster than correlations perpendicular to the separation
vector, and there is a small dynamics dependence in the
growth of ξθ4, but there is no dependence on the specifics of
the interactions for this set of glass formers. The similarity
between the KA, WCA, and IPL systems indicates that
there is no change in the shape of dynamically hetero-
geneous regions due to the presence of attractive inter-
actions for this range of relaxation times. This is
qualitatively different from the results of Zhang et al.
[9]. We note that in the latter study clusters of fast particles
in glasses were monitored whereas we examine correla-
tions of slow particles in equilibrium liquids approaching
the glass transition.
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FIG. 3. The correlation length ξov4 versus τovα =τ0. The dash-
dotted line is a mode-coupling-like fit ξov4 ∼ ðτovα Þ1=z where
z ¼ 4.8. The dotted line is a fit to ξov4 ∼ lnðτovα Þ. For longer
relaxation times the data are better described by ξov4 ∼ ln ðτovα Þ3=2
which is shown as the dashed line. The solid line is a fit to the
facilitation prediction of lnðξov4 Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðBτovα Þp þ C. The solid

vertical line indicates the relaxation time where the Stokes-
Einstein violation begins and the solid horizontal line shows the
correlation length where the relationship χov4 ∼ ðξov4 Þ3 begins.
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For all systems the initial growth of ξ04 is faster than the
initial growth of ξπ=24 , see inset to Fig. 4 where we show
Δξ4 ¼ ξ04 − ξπ=24 . The correlation length ξ04 grows faster
than ξπ=24 until the difference between the two is around one
particle diameter, then they grow at statistically the same
rate as a function of τα=τ0. The initial growth of Δξ4
depends slightly on the microscopic dynamics, but is
independent of the system. For times exceeding τsα, Δξ4
is around one particle diameter and it is independent of the
dynamics or the details of the interactions.
Having a larger ξ04 than ξπ=24 is suggestive of the string-

like motion reported in previous work [40,41]. However,
our work examines the slow particles, while the string-like
motion is observed for the fast particles. We leave a more
detailed study of a possible connection for future work.
In summary, we demonstrated universal behavior of the

size and shape of dynamic heterogeneity for temperatures
below Ts (or volume fractions above ϕs), i.e., below the
temperature (above the volume fraction) where Stokes-
Einstein violation begins. We note that Ts is below the
onset temperature of supercooling, To, thus below the
temperature where dynamic heterogeneity emerges [23].
Thus, there is an intermediate temperature (volume frac-
tion) regime where the spatial extent of the dynamic
heterogeneity is universal but its shape is dynamics
dependent. We compared our results to predictions of
different theories of glassy dynamics. In order to clearly
differentiate between the RFOT theory and the facilitation
approach we would need to extend the range of relaxation
times by approximately two decades.
We note that our universal correlation between the

dynamic correlation length and the relaxation time parallels
the correlation between the static point-to-set length and the

relaxation time found by Hocky et al. Combining our
results and those of Ref. [7] we could claim a correlation
between the dynamic length and the static length. However,
there are two cautionary notes regarding this possible
relationship. First, we examined a significantly bigger
range of slowing down whereas Hocky et al.were restricted
by the well-known difficulty of equilibrating systems in
confinement. Second, Hocky et al.’s lengths were deter-
mined using the so-called spherical geometry [42].
Charbonneau and Tarjus [43] used an alternative way to
obtain the point-to-set lengths, the so-called random pin-
ning geometry, and obtained static lengths that seem to be
uncorrelated with dynamic lengths. It is unclear whether
the fundamental difference between Refs. [7] and [43],
originates from different geometry and/or the different
systems used in these two studies. However, we note that
Hocky et al.’s spherical geometry point-to-set length was
recently found to be proportional to a length scale asso-
ciated to where the lowest eigenvalue of the Hessian matrix
becomes sensitive to disorder [44]. The latter length is
easier to evaluate at low temperatures and this may allow a
closer investigation of the relation between dynamic and
static lengths. Future work should also explore a possible
connection between the universality found here and
quasiuniversality found in so-called Roskilde-simple
liquids [45].
Finally, our simulational verification of a universal

behavior of dynamic heterogeneity complements a recent
experimental finding [46] of a universal correlation
between the number of correlated molecules and the
apparent activation enthalpy. We note that Bauer et al.
were able to examine much more supercooled liquids than
is feasible in simulations and a direct, quantitative com-
parison of their finding and our results is difficult.
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