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We consider an n-component fixed-length order parameter interacting with a weak random field in
d ¼ 1, 2, 3 dimensions. Relaxation from the initially ordered state and spin-spin correlation functions are
studied on lattices containing hundreds of millions of sites. At n ≤ d the presence of topological defects
leads to strong metastability and glassy behavior, with the final state depending on the initial condition. At
n ¼ dþ 1, when topological structures are nonsingular, the system possesses a weak metastability. At
n > dþ 1, when topological objects are absent, the final, lowest-energy state is independent of the initial
condition. It is characterized by the exponential decay of correlations that agrees quantitatively with the
theory based upon the Imry-Ma argument.
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More than 40 years ago, Larkin argued that randomly
positioned pinning centers destroy translational order in a
flux-line lattice [1]. A more general theorem was suggested
by Imry and Ma [2]. It states that a static random field,
regardless of strength, destroys the long-range order
associated with a continuous-symmetry order parameter
below d ¼ 4 spatial dimensions [3]. The prototype
Hamiltonian is

H ¼
Z

ddr

�
αe
2
ð∇SÞ2 − h · S

�
(1)

with S and h being n-component fixed-length vector field
and static random field, respectively. In the Imry-Ma (IM)
state, the directions of S are correlated within distance
Rf ∝ ð1=hÞ2=ð4−dÞ. The IM argument has been applied to
random magnets [4], arrays of magnetic bubbles [5],
superconductors [6], charge-density waves [7], liquid
crystals [8], superfluid 3He-A [9], etc. Its validity for
distances beyond Rf has been questioned by analytical
work based upon renormalization group and replica-
symmetry breaking methods [10]. Numerical work
[11–16] revealed glassy properties of the random-field
model. It was suggested in Ref. [16] that the energy cost
of vortices prevents the spins in the xy random-field model
from relaxing to a disordered state from the initially
ordered state.
In this Letter, we show more generally that the long-

range behavior of random-field systems is controlled by
topology. Our emphasis is on glassy vs reversible behavior.
The condition S2 ¼ S20 ¼ const leaves n − 1 components
of the field independent. At n ≤ d, mapping of n − 1
independent parameters describing the field S onto spatial
coordinates provides topological defects with singularities.
They are vortices in the xy model (n ¼ 2) in 2d, vortex
loops in the xy model in 3d, and hedgehogs in the

Heisenberg model (n ¼ 3) in 3d. As we shall see, the
IM state necessarily contains such topological defects.
Energy barriers associated with their creation or annihila-
tion and their pinning by the random field lead to strong
metastability. In the case of n > dþ 1, the mapping of the
S space onto the r space that generates topological objects
is impossible. They are absent together with the energy
barriers and pinning. The stable state of the system is
unique and independent of the initial condition. In this case,
the long-range order is destroyed in a manner that agrees
quantitatively with the IM picture. This applies to the
Heisenberg model with n ¼ 3 (and greater) in one dimen-
sion, n ¼ 4 (and greater) in two dimensions, and n ¼ 5
(and greater) in 3d. The case of n ¼ dþ 1 is the borderline
between the above two cases. It corresponds to nonsingular
topological objects: kinks in the xymodel in 1d, Skyrmions
in the Heisenberg model with n ¼ 3 in 2d, and similar
nonsingular solutions for n ¼ 4 in 3d. They are charac-
terized by the topological charge Q ¼ �1;�2;…. Its
conservation is important as it is only weakly violated
by the discreteness of the lattice and by a weak random
field. Possession of a pinned topological charge by the IM
state prevents the system from relaxing to this state from
any initial state that has a different topological charge.
We have numerically studied the discrete version of the

Hamiltonian (1) with the nearest-neighbor exchange inter-
action in the presence of the external field H,

H ¼ −
1

2

X
ij

Jijsi · sj −
X
i

hi · si −H ·
X
i

si; (2)

on lattices containing hundreds of millions of spins si of
length s. The relation between parameters of the continuous
and discrete models is αe ¼ Jadþ2, S0 ¼ s=ad, where a is
the lattice parameter. We consider hypercubic lattices with
periodic boundary conditions containing Ld spins, L being
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the linear size of the system. In computations, we use
J ¼ s ¼ a ¼ 1 and h ¼ HR. Our numerical method
combines sequential rotations of spins towards the direction
of the local effective field Hi;eff ¼

P
iJijsj þ hj þH,

with energy-conserving spin flips: si → 2ðsi ·Hi;effÞ×
Hi;eff=H2

i;eff − si, applied with probabilities α and 1 − α,
respectively, α playing the role of the relaxation constant.
High efficiency of this method for glassy systems under the
condition α ≪ 1, which is physically equivalent to slow
cooling, has been demonstrated in Refs. [15,16].

Relaxation of the per-site magnetization m ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m ·m

p
,

where m ¼ ðsNÞ−1PiSi, out of a collinear state is shown
in Fig. 1. For each process, it was checked that the running
time was sufficient to have no further relaxation in the
final state.
In one dimension, numerical analysis of different spin

configurations shows that for n ¼ dþ 1 ¼ 2 the IM-like
state withm ¼ 0 has the lowest energy. This state, however,
cannot be achieved through relaxation from the initially
ordered state without forming nonsingular kinks or anti-
kinks associated with the full clockwise or counterclock-
wise rotations of the spin as one moves along the spin
chain. While the system tends to disorder, it cannot do so
completely because it requires changing the topological
charge that equals the difference in the number of kinks and
antikinks pinned by the random field. However, for three-
component spins in one dimension, topologically stable
objects are absent and the system disorders completely as is
illustrated by Fig. 1(a).
Two-component spins in two dimensions form well-

known topological singularities—vortices in the xy model
[11,16,17]. Here again, the system wants to relax to the
IM-like state with m ¼ 0 but cannot do it without forming
vortices that cost energy, which explains the curve in
Fig. 1(b) for the xy model in 2d. In the marginal case of
d ¼ 2, n ¼ 3, the model possesses nonsingular topological
objects: Skyrmions [17]. In the absence of the random field,
the difference in the number of Skyrmions and anti-
Skyrmions is a conserved topological charge. Skyrmions
on the lattice tend to collapse [18]. However, pinning by the
random field stabilizes them. We have checked numerically
that for d ¼ 2, n ¼ 3 the IM state with m ¼ 0 has the
lowest energy. However, conservation of the topological
charge prevents the system from relaxing to this state from
almost any initial condition. This effect is responsible for a
small but finite magnetization obtained by the relaxation
from the initially ordered state, Fig. 1(b). On the contrary,
for a four-component spin in two dimensions, topological
objects are absent and the system relaxes to the state with
m ¼ 0; see Fig. 1(b).
Relaxation in a three-dimensional case is illustrated by

Fig. 1(c). For n ¼ 2, the system possesses vortex lines or
loops that in the lattice model are singular pancake vortices
in 2d planes stuck together; see Fig. 2(a). Similarly, the
model with three-component spins in 3d has singular
hedgehogs; see Fig. 2(b). The energy cost of vortex loops
and hedgehogs prevents the 3d system of spins from
relaxing to the m ¼ 0 state, as is shown in Fig. 1(c). In
the marginal case of n ¼ 4, the 3d random-field model has
nonsingular topological structures pinned by the random
field that are similar to Skyrmions in 2d. In this case, the
final magnetic moment is still nonzero but small; see
Fig. 1(c). We again find that the energy of the IM-like
m ¼ 0 state for d ¼ 3, n ¼ 4 is lower than that of them ≠ 0
state. However, the difference in the topological charge

FIG. 1 (color online). Relaxation of the magnetization of the
random-field spin system from fully ordered initial state for
different d and n: (a) d ¼ 1, n ¼ 2, 3; (b) d ¼ 2, n ¼ 2 3, 4; (c)
d ¼ 3, n ¼ 2 3, 4, 5. MCS means a full spin update, as in Monte
Carlo simulations.
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prevents the system from relaxing to the IM state from
almost any initial state. The model with five-component
spins in 3d does not possess any topologically stable
structures. The relaxation of the system from the ordered
state is unobstructed by any topological arguments, and the
system ends up with m ¼ 0, Fig. 1(c).
Starting from a random orientation of spins, one obtains

states of vortex or hedgehog glasses with m ¼ 0 and
energies higher than those of the ordered states. The
relation between topology and metastability in, e.g., two
spatial dimensions, is further illustrated by the hysteresis
curves in Fig. 3. The model with n ¼ 2 that possesses xy
vortices with singularities is characterized by a sizable
hysteresis loop, which is indicative of strong metastability.
The loop becomes thin for n ¼ 3 when nonsingular
Skyrmions are present. It disappears completely, resulting
in a reversible magnetic behavior, at n ¼ 4 when topo-
logical objects are absent. Similar behavior for different n
values has been observed in 3d.

To get a better understanding of how topology modifies
the IM argument, let us recall that in that argument the
order parameter S follows the direction of the average
random field h̄ on a scale Rf. The energy of the random
field in Eq. (1) is proportional to −h̄S0 ∼ −hS0=R

d=2
f ,

whereas the nonuniformity energy is proportional to
αeS20=R

2
f. Minimization of the total energy with respect

to Rf then leads to the rotation of S by a significant angle
on a scale Rf ∝ ðJs=hÞ2=ð4−dÞ. For R≳ Rf, correlations
should be completely destroyed; thus, the state of the
system should be disordered. This famous argument,
however, does not account for the energy associated with
unavoidable singularities at n ≤ d. To show their existence
in the IM state, consider components of the averaged
random field h̄β, β ¼ 1;…; n. Since h̄β are sums of many
random numbers, they are statistically independent and
have a Gaussian distribution. In about one half of the space
h̄β > 0, and in the other half h̄β < 0. Boundaries between
these regions are subspaces of dimension d − 1, where
h̄β ¼ 0. Their intersection, that is, h̄ ¼ 0, is unavoidable
and forms a subspace of dimension d − n if n ≤ d. It is easy
to see that subspaces with h̄ ¼ 0 are singularities in the spin
field S. Since S2 ¼ const, crossing subspaces h̄ ¼ 0 makes
all components of S change direction. For n ¼ 2 in 2d
subspaces h̄ ¼ 0 are points and the corresponding singu-
larities are vortices or antivortices. A spin field in the 2d xy
model generated in accordance with the IM prescription is
shown in Fig. 4. The red line corresponds to h̄x ¼ 0 and,
thus, spins directed along the y axis. The blue line
corresponds to h̄y ¼ 0 and, thus, spins directed along the
x axis. At the intersections of red and blue lines, the spins
can look neither in the x nor in the y direction. This
generates topological defects—vortices or antivortices. For

FIG. 2. Topological singularities in the random-field spin
model in three dimensions obtained by relaxation from random
initial orientation of spins: (a) pinned vortex loops of the xy
(n ¼ 2) model; (b) pinned hedgehogs of the Heisenberg (n ¼ 3)
model. fS is the fraction of the lattice interstitial (body centered)
sites occupied by singularities.

FIG. 3 (color online). Hysteresis curves of the random-field
spin model in two dimensions for n ¼ 2, 3, 4.

FIG. 4 (color online). Emergence of vortices and antivortices at
the intersections of lines corresponding to h̄x ¼ 0 (left and right
curves shown in red) and h̄y ¼ 0 (upper and lower curves shown
in blue) in the random-field 2d xy model. Arrows show spins on
lattice sites.
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n ¼ 2 in 3d subspaces h̄ ¼ 0 are lines and the singularities
are vortex lines or loops. For n ¼ 3 in 3d subspaces h̄ ¼ 0
are points and the singularities are hedgehogs. They emerge
at the intersection of surfaces corresponding to h̄x ¼ 0,
h̄y ¼ 0, and h̄z ¼ 0.
By order of magnitude the number of singularities equals

the number of IM domains ðL=RfÞd. The lowest energy of
an xy vortex in a 2d IM state would be 2πJs2 lnðRf=aÞ.
The energy of the vortex loop in 3d contains an additional
factor Rf=a. Consequently, the exchange energy per spin
goes up by lnðRf=aÞ as compared to the IM argument that
neglects vortices. The energy of a hedgehog would be
4πJs2ðRf=aÞ. It changes the exchange energy by a
numerical factor of order unity. Thus, topological defects
only modify the IM argument by making Rf go up
logarithmically in the xy model and by a factor of order
unity in the Heisenberg model. However, the energies of
topological defects that are needed to form the IM state as
the system disorders are high compared to the Curie
temperature. This slows down further disordering that
requires the creation of singularities. On the contrary, for
n > d, the averaged random field is nonzero everywhere
and the spin field S is nonsingular. Still, at n ¼ dþ 1 the
presence of nonsingular topological objects and conserva-
tion of topological charge prevents the ordered state from
relaxing to the IM state. Only at n > dþ 1, when topo-
logical objects are absent, does the system relax to the
m ¼ 0 IM state.
We have computed spin-spin correlation functions in the

final state obtained through relaxation from the initially
ordered state. At n ≤ dþ 1 and Rf ≪ L, the ferromagnetic
order persists: The correlation function at large distances
falls to a plateau that coincides with m2 of the plateau in
Fig. 1. On the contrary, at n > dþ 1 the order is fully
destroyed in accordance with the IM picture. The 3d
correlation function for n ¼ 5 is shown in Fig. 5.
We have analytically derived from Eq. (1) the short-
distance form of the spin-spin correlation function in
3d, hsðr1Þ · sðr2Þi ≅ 1 − jr1 − r2j=Rf, where Rf=a ¼
8πð1 − 1=nÞ−1ðJs=hÞ2. In fact, this short-range form of
the correlation function agrees with our numerical results
for all n in 3d. For n ≥ 5, the spin-spin correlation function
at all distances can be very well fitted by hsðr1Þ · sðr2Þi ¼
exp ð−jr1 − r2j=RfÞ. A good agreement with this formula
is illustrated by Fig. 5. So far we have been able to prove
analytically the numerically confirmed exponential decay
of the correlation function in 3d only for the mean-spherical
model that corresponds to n ¼ ∞ [19]. However, the
observed exponential behavior of hsðr1Þ · sðr2Þi and
the observed 1=h2 dependence of Rf on the strength of
the random field for small h at n ¼ 5, d ¼ 3 is clear
evidence of the onset of the IM state in the absence of
topological objects.
In conclusion, we have demonstrated that the topology of

the order parameter controls whether the random-field

system exhibits reversible or irreversible behavior. For
the n-component spin in d dimensions, the presence of
topological structures at n ≤ dþ 1 gives rise to vortex,
hedgehog, and Skyrmion glasses. For n > dþ 1, when
topological structures are absent, the behavior of the system
is reversible and spin-spin correlations agree quantitatively
with the Imry-Ma picture. These findings provide the
guiding principle for assessing the long-range behavior
of various systems with quenched randomness and
continuous-symmetry order parameter.
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