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We provide a precise microscopic definition of the recently observed inverse Edelstein effect in which a
nonequilibrium spin accumulation in the plane of a two-dimensional (interfacial) electron gas drives an
electric current perpendicular to its own direction. The drift-diffusion equations that govern the effect are
presented and applied to the interpretation of the experiments.
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Introduction.—The spin Hall effect (SHE) and the
inverse spin Hall effect (ISHE) are well established
phenomena [1–11], which play an important role in
experimental spintronic devices [12–17]. In the SHE, an
electric current Jx, driven by an electric field Ex produces a
z spin current in the y direction, denoted by Jzy. In the ISHE,
which is the Onsager reciprocal of the SHE, a spin current
Jzy, driven by a “spin electric field” Ez

y produces an electric
current Jx in the x direction. Both effects are characterized
by the spin-Hall conductivity, which can be as large as
105ðΩ · mÞ−1 in bulk metals such as Pt [18,19]. The SHE
plays an important role in technology as a source of spin
currents that can, for example, excite a spin wave in a
ferromagnet or flip the magnetization of an element of a
spin valve structure [18]. Likewise, the ISHE has been
exploited for the detection of spin currents [19–21].
Another well-known effect, intimately related to the

SHE, is the so-called Edelstein effect (EE) [22] (notice,
however, the paper published at about the same time by
Lyanda-Geller and Aronov [23]). In this effect, a steady
current Jx, driven by an electric field Ex produces a steady
non-equilibrium spin polarization Sy. The effect has been
observed experimentally [24,25] and can be understood, on
a basic level, as the result of the effective magnetic field
(due to spin-orbit coupling) “seen” by the drifting electrons
in their own reference frame [26].
After much theoretical work in the past decade, an

intuitive and useful drift-diffusion theory of the SHE,
ISHE, and EE has recently emerged (see Refs. [27–29]).
This theory is firmly grounded in quantum kinetic equa-
tions and diagrammatic calculations for systems in which
the spin-orbit interaction is linear in k and can, therefore,
be described by an SUð2Þ vector potential. In the mean-
while, relatively little attention has been paid to the inverse
Edelstein effect (IEE), by which we mean the Onsager
reciprocal of the normal Edelstein effect. Although the
spin-galvanic effect observed almost a decade ago by
Ganichev et al. [30] in GaAs may be interpreted as a

manifestation of the IEE, to the best of our knowledge, the
latter was first introduced and quantitatively described in a
very recent experimental paper by Rojas Sánchez et al.
[31]. The possibility of spin-voltage conversion was also
recognized theoretically, but only in very specific devices
such as quantum dots connected to leads [32] and spin-
polarized p-n junctions in semiconductors [33–35]. In this
Letter, we provide a precise theoretical characterization of
this effect, independent of any specifics of the spin injection
mechanism, and introduce the drift-diffusion equations that
describe it.
At first sight, the IEE is puzzling: a static magnetic field

By, which couples linearly to the spin density Sy, will not
create an electric current in the x direction; rather, it will
change the value of the equilibrium spin polarization Sy.
This reasoning fails to recognize the essential difference
that exists between the spin polarization created by a static
magnetic field in equilibrium and the nonequilibrium spin
polarization that arises from a steady spin injection. In both
cases, the spin polarization is constant in time, but similar
to the spin-galvanic effect in p-n junctions [33], it is only
the nonequilibrium part of the polarization that drives an
electric current. The theoretical problem is to identify the
mechanical field that is reciprocal, in the sense of Onsager’s
reciprocity relations, to the electric field Ex. This is the field
that describes the physical process of spin injection—an
effect that is more commonly treated as a source term in the
Boltzmann collision integral.
It will be shown below that the sought “spin injection

field” is simply a magnetic field that varies linearly in time.
Such a field produces a spin density that, at each instant of
time, lags slightly behind the instantaneous equilibrium
spin density by an amount proportional to the spin
relaxation rate. The difference between the true spin
polarization and the instantaneous equilibrium polarization
is the proper nonequilibrium spin density injected by the
field. The efficacy of the injection is, thus, limited by the
spin relaxation time τs.
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Figure 1 shows the qualitative picture of the IEE for the
paradigmatic case of the Rashba spin-orbit coupling, i.e., a
spin-orbit coupling of the form αðz × pÞ · σ, where z is the
unit vector perpendicular to the plane of the electrons, α is
the Rashba velocity, and p is the momentum of the electron.
If spin injection could be selectively done at fixed
momentum, it would be, then, obvious in order to produce
a charge current along the x direction to inject and extract
electrons at (−kF, 0) and (kF,0), respectively, where the
Rashba field αðz × pÞ aligns the spin in the y direction (see
Fig. 1). This may happen at the surface of a topological
insulator, where momentum and spin are locked [36].
However, in the Rashba model, y-polarized spin injection
may occur at any momentum, irrespective of the direction
of the internal field αðz × pÞ. Take, for instance, the
apparently least favorable case at (0, kF) or (0, −kF).
Under the action of the Rashba field αðz × pÞ, the spin of
an injected electron, initially pointing along y, acquires a z
component that is positive or negative according to whether
py is positive or negative. The resulting correlation between
py and Sz is the signature of a spin current Jzy. At this point,
the regular inverse spin Hall effect takes hold [37],
converting part of the spin current to a perpendicular
charge current Jx. This shows, as we will derive later in
a quantitative way, that spin density in the Rashba model is
intimately related to both spin and charge currents in such a

way that the final result is a direct proportionality between
Jx and the incoming current of Sy spin

Jx ¼ λIEEJ
y
s; (1)

where λIEE connects an areal current density to a volume
spin current density and, therefore, has the dimensions of a
length if, as we do in this Letter, we express both charge
and spin in the same units (this is achieved by multiplying
the spin by −ℏ=e). In the simplest case of the pure Rashba
model we find λIEE ¼ ατ, where τ is the momentum
relaxation time.
In this Letter, we provide a precise formal definition of

the IEE in terms of the Kubo formula for the response of the
current Jx to the B

:

y field, which is the Onsager reciprocal of
the electric field Ex. We also develop the drift-diffusion
theory of the IEE along the lines of Refs. [27–29] in the
presence of both intrinsic and extrinsic (but linear in k)
spin-orbit coupling. In the pure Rashba limit, these equa-
tions yield Eq. (1). Finally, we make contact with the recent
experimental work on the generation of a charge current by
spin injection into a Ag-Bi interface [31] and identify the
proper relaxation time to be used in the expression for λIEE
as the momentum relaxation time.
Formal definition of IEE.—The direct Edelstein effect is

defined by the proportionality

SyðωÞ ¼ σDEEðωÞExðωÞ; (2)

where we have allowed a periodic variation of the field
and the induced density at a frequency ω. To formalize the
calculation of the Edelstein conductivity σDEEðωÞ, we
introduce the Kubo response function of the homogeneous
spin density Sy to a vector potential Ax, such that
Ex ¼ −A

:

x. Since Ax couples linearly to the current density,
we denote this response by hhŜy; Ĵxiiω, where Ĵx is the
operator of the physical current (obtained by differentiating
the Hamiltonian with respect to Ax) and Ŝy is the operator
of the spin density. The double bracket denotes the Kubo
product hhÂ; B̂iiω ≡ −ði=ℏÞ R t

0h½ÂðtÞ; B̂ð0Þ�eiωtdt. Since
the electric field is related to the vector potential by
EðωÞ ¼ iωAðωÞ, we immediately see that

σDEEðωÞ ¼
hhŜy; Ĵxiiω

iω
. (3)

In the dc limit, the numerator vanishes by gauge invariance
because a static and uniform vector potential does not
change Sy. Then we obtain the dc Edelstein conductivity

σDEEð0Þ ¼ lim
ω→0

ℑmhhŜy; Ĵxiiω
ω

; (4)

which is a real quantity.
The inverse Edelstein effect is similarly defined by the

proportionality
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FIG. 1 (color online). Schematic description of the Rashba
model and of the generation of a spin current from injected spin in
the y direction. The thick arrows denote the Rashba field around
which the spin (thin arrow) precesses. The two insets (a) and
(b) zoom in on the dynamics of the spin near points (0, kF) and (0,
−kF) in momentum space. In the first case the spin, initially
pointing in the y direction, acquires a positive z component and
travels in the þy direction. In the second case, the spin acquires a
negative z component and travels in the −y direction.
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JxðωÞ ¼ σIEEðωÞ½gμBB
:

yðωÞ�; (5)

where, as described in the introduction, B
: y is the field that

injects a nonequilibrium spin density Sy. We then introduce
the Kubo response function of the homogeneous current
density to a magnetic field that couples linearly to the
spin density, namely, hhĴx; Ŝyiiω. Noting that, −B

: yðωÞ ¼
iωByðωÞ yields

σIEEðωÞ ¼
hhĴx; Ŝyiiω

iω
. (6)

In the dc limit,

σIEEð0Þ ¼ lim
ω→0

ℑmhhĴx; Ŝyiiω
ω

. (7)

The Onsager relation, namely, the equality of the con-
ductivities σDEE and σIEE, follows immediately from well-
known properties of the Kubo product for a system
governed by a time-reversal invariant Hamiltonian. This
establishes the IEE as described above as the proper
Onsager reciprocal of the standard Edelstein effect.
Drift-diffusion theory.—An elegant description of the

direct spin Hall effect and Edelstein effect has recently been
derived based on the methods of the quasiclassical Keldysh
Green function technique [27–29]. We recall here the
main aspects of this description for the case of the two-
dimensional electron gas with Hamiltonian

H ¼ p2

2m
þ VðrÞ þ αðpyσ

x − pxσ
yÞ þ λ½p ×∇VðrÞ� · σ

(8)

where VðrÞ is the impurity potential. The orbital motion
takes place in the (x, y) plane, whereas the spin is three
dimensional. The last two terms represent the intrinsic and
the extrinsic spin-orbit coupling, respectively; λ is the
extrinsic coupling constant, directly related to the square
of the effective “Compton wavelength” for the conduction
band; α is the Rashba velocity, proportional to the electric
field Ez perpendicular to the plane, and approximately
given by λEz. Since the complete formal derivation of the
drift-diffusion theory presented below has been provided in
Ref. [27], we limit ourselves here to providing an heuristic
justification. We exploit the fact that the spin-orbit coupling
is linear in electron momentum p and can, therefore, be
represented by a constant SUð2Þ vector potential p2=2mþ
αðpyσ

x − pxσ
yÞ ¼ ðpþP

a¼x;y;zeA
aσa=2Þ2=2m, where

the only nonzero components are −eAx
y ¼ eAy

x ¼ −2mα.
The non-Abelian character of the SUð2Þ group entails the
appearance of covariant derivatives ∇i defined as follows:

ð∇iOÞa ¼ ∂iOa − e
X

b;c

ϵabcAb
i O

c; (9)

where Oa is a generic vector function (in spin space) on
which the derivative acts. Notice that the second term in
Eq. (9) differs from zero even for a homogeneous function.
An immediate consequence is the appearance of a SUð2Þ
magnetic field different from zero even for uniform and
constant vector potential. It is given by the covariant curl of
the SUð2Þ vector potential: −eBa

i ¼ ði=2Þϵijk½Aj; Ak�a with
only nonzero component −eBz

z ¼ −ð2mαÞ2. Once one
accepts the above SUð2Þ language, it is not too surprising
that the coupled equations for charge and spin currents take
the form first introduced in Ref. [27], namely,

S
: a ¼ −∇iJai −

δSa

τEY
; (10)

Jai ¼ −Dð∇iδSÞa þ σsEa
i þ

eτ
2m

ϵijkJjBa
k; (11)

Ji ¼ −D∂inþ σDEi þ
eτ
2m

ϵijkJajB
a
k; (12)

where D ¼ v2Fτ=2 is the diffusion constant, vF is the Fermi
velocity of the 2DEG, and σD ¼ σs ¼ neτ=m is the Drude
conductivity. These equations must be solved, in general, in
conjunction with appropriate boundary conditions [38,39].
The first equation of the set is the continuity equation for

the spin density. The nonconservation of the spin, due to the
action of the Rashba field, is taken into account via the
replacement of the ordinary derivative by the SUð2Þ covar-
iant derivative, whereas the additional spin relaxation due to
impurity scattering is taken into account via the phenom-
enological Elliot-Yafet relaxation time τEY [40]. The quan-
tity δSa ¼ Sa − Sae is the deviation of the spin density from
the instantaneous equilibrium spin density Sae ¼ χsBaðtÞ,
where χs ¼ −gμBðm=πÞ is the static spin susceptibility.
The last two equations express the spin current and the

charge current densities as sums of diffusive, drift, and
Hall-like terms. Whereas in uniform circumstances the
charge current does not have a diffusion contribution, the
spin current, due to the SUð2Þ covariant derivative, does
have an anomalous diffusion contribution—the first term
on the right hand side of Eq. (11). This anomalous diffusion
describes the spin current that arises from the precessional
motion of the spins in the Rashba field. Its origin is
described qualitatively in Fig. 1.
Whereas the second term on the right hand side of

Eq. (11) is the well-known drift term due to the spin-electric
field arising from the spin accumulation potential of
classical spintronics, the first and third terms are features
of the Rashba model and are responsible for the EE and the
SHE, respectively. To appreciate this, we recall that under
very general conditions, the coupling between charge
and spin currents can be described [37] in terms of a
single parameter ~γ, the spin-Hall angle, which must be
evaluated from a microscopic model. If we now consider a
definite geometry where the external electric field (which is
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present in both effects) is applied along the x direction,
Eqs. (10)–(12) read

δSy
: ¼ −2mαJzy −

δSy

τEY
þ χsB

: y; (13)

Jzy ¼ 2mαDδSy þ σsEz
y þ ~γJx; (14)

Jx ¼ σDEx − ~γJzy. (15)

In the first equation, χsB
: y is the spin injection rate. For the

pure Rashba model the spin-Hall angle is ~γ ¼ −2mα2τ [41],
which corresponds to the ωcτ of the classical magnetotran-
sport theory, where the cyclotron frequency ωc is replaced
by 2mα2. When λ ≠ 0, the parameter ~γ gets additional
contributions proportional to λ, due to the so-called side-
jump and skew-scatteringmechanisms.We refer to Ref. [29]
for details. Clearly, the spin Hall effect is a consequence of
the Hall-like term with ~σSHE ¼ ~γσD [42].
Solving the coupled Eqs. (13)–(15) yields expression for

δSy, Jzy, and Jx, which capture the phenomenology of the
direct and inverse Edelstein effects and spin Hall effects,
including the effects of extrinsic impurity scattering,
which are quite nonintuitive in the case of the DEE (see
Refs. [28,29]). In particular, setting Ex ¼ Ez

y ¼ 0 yields

δSy ¼ τsχsB
:

y

1 − iωτs
; (16)

Jzy ¼ 2mαD
τsχsB

:

y

1 − iωτs
; (17)

Jx ¼ −
2π

e
α ~σSHE

τsχsB
:

y

1 − iωτs
; (18)

where the total relaxation time is given by τs ¼ 1=ðτ−1EY þ
τ−1DPÞ with τ−1DP ¼ ð2mαÞ2D the standard D’yakonov-Perel’
spin relaxation time. In the low-frequency limit, the
coefficient of the IEE reads

σIEE ¼ 2

e
αmτs ~σSHE. (19)

In the most interesting regime in which the Rashba
spin precession dominates extrinsic processes, the EY spin
relaxation process is negligible and the spin-Hall conduc-
tivity is given by ~σSHE ≃ −ðe=8πÞð4τ=τDPÞ. In this regime,
which is directly relevant to the experiments of Rojas
Sánchez et al. [31], we obtain

σIEE ¼ −αmτ=π. (20)

This is the result that would have been obtained by
computing the anomalous part of the current Jx in the
presence of Rashba coupling, using for the expectation

value of δSy the nonequilibrium spin polarization injected
by the source χsB

: y. Although derived for the diffusive
regime, this result remains valid in the ballistic regime, due
to the cancellation of the spin relaxation rate contained in
δSy against the one contained in the denominator of ~σSHE.
Discussion of experiments.—In a recent experiment,

Rojas Sánchez et al. [31] observed the inverse Edelstein
effect at the Ag/Bi interface. The Ag/Bi interface hosts a
2DEG of surface density n≃ 6 × 1013 cm−2, correspond-
ing to a Fermi wave vector kF ≃ 0.2 Å−1 [43,44]. These
electrons reside in states bound to the interface and
propagate only in the plane of the interface with an effective
mass m� ≃ 0.35m [43]. They are subjected to an unusually
large Rashba spin-orbit field, ℏα≃ 1 eVÅ, and they are
well described by the Rashba 2DEGHamiltonian of Eq. (8).
In practice, rather than using a time-dependent magnetic
field as we proposed above, Rojas Sánchez et al. inject the
nonequilibrium spin polarization by a spin current gener-
ated by ferromagnetic resonance of a remote NiFe layer. It is
believed [31] that the injected spin current perpendicular
to the interface does not propagate but is almost entirely
absorbed, leading to a nonequilibrium spatially uniform
spin accumulation at the interface. Thus, the observed in-
plane charge current cannot be explained by the ISHE of the
interfacial electron gas (the signal is demonstrated to not be
due to the ISHE in the bulk Ag or Bi [31]). Because the spin
accumulation is uniform, the spatial derivatives vanish and
no boundary condition is needed.
Obviously, in the absence of external magnetic field,

the equilibrium distribution is unpolarized, i.e., δSy ≡ Sy.
Moreover, the spin pumping term in Eq. (13), χsB

:

y, should
be replaced by the injected spin current density Jys
(polarized along the y direction). Notice that this latter
spin current density is three dimensional (i.e., related to
number of electrons per unit volume) in contrast to the
charge current density, which is a surface density. Hence,
the ratio Jx=J

y
s must have the dimensions of a length.

Therefore, the induced charge current is expressed by

Jx ¼ −
2π

e
ατs ~σSHEJ

y
s →

Intrinsic

dominant
ατJys . (21)

The result in the intrinsic limit is similar to that suggested
by the simple two-band model in the experimental paper,
Jx ¼ ατsJ

y
s [31]. Whereas in Ref. [31] it is suggested that

the relaxation time in this formula effectively takes into
account the coupled spin-momentum dynamics, our theory
provides a full microscopic derivation of it. In particular, our
theory shows that the relaxation time present in the ratio
between induced charge current and injected spin current
should be the momentum relaxation time, even though the
magnitude of the spin polarization itself is proportional to
the spin relaxation time [see Eq. (16)]. This property is also
demonstrated by our calculation from Kubo’s formula (not
shown). The underlying physics is that the generation of
charge current from a spin polarization is mediated by an
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in-plane spin current (generated by precession in the Rashba
field; see Fig. 1, which is, therefore, proportional to the SHE
coefficient, introducing a factor τ=τDP as shown in Eq. (21).
With the measured value of λIEE ¼ ατ ¼ 0.3 nm, we
estimate τ ¼ 2 × 10−15 s and τs ¼ 3 × 10−15 s, which puts
us at the borderline of the spin-diffusive regime [45].
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