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Pattern-Wavelength Coarsening from Topological Dynamics in Silicon Nanofoams
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We report the experimental observation of a submicron cellular structure on the surface of silicon targets
eroded by an ion plasma. Analysis by atomic force microscopy allows us to assess the time evolution and
show that the system can be described quantitatively by the convective Cahn-Hilliard equation, found in the
study of domain coarsening for a large class of driven systems. The space-filling trait of the ensuing pattern
relates it to evolving foams. Through this connection, we are actually able to derive the coarsening law for
the pattern wavelength from the nontrivial topological dynamics of the cellular structure. Thus, the study of
the topological properties of patterns in nonvariational spatially extended systems emerges as comple-
mentary to morphological approaches to their challenging coarsening properties.
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Many natural systems lead to tessellations of space into
cellular structures with varying degree of order, as in soap
froths, polycrystalline materials, biological tissues, fluid
convection, galaxy clusters, or graphene-based networks
[1-4]. In these patterns, sharp boundaries separate homo-
geneous regions with sizes and other statistics which can be
characterized, including topological relations between
domains, down to near 100 nm [5].

Frequently, these structures evolve in time, with coars-
ening properties that have focused large interest, ever since
von Neumann’s and Mullins’ classic works on soap froths
[6] and metallic grain boundaries [7]. By coarsening, we
mean the increase of a characteristic length scale (say, the
lateral size of domains, £) as a power law with time, in such
a way that universal behavior occurs [8,9]. This behavior is
also found in many other systems, like liquid crystals [10]
or epitaxial thin film growth [11], granular matter [12], or
social dynamics [13], being one of the central open
problems in nonlinear physics.

Coarsening systems can be grouped into two large
classes: one which can be described in terms of phase
separation [8,9] and another one in which morphological
instabilities induce pattern formation with a characteristic
size [14] that evolves nontrivially. In the latter class,
important general criteria [15] have been put forward
recently to predict the type of behavior of #, from
remaining fixed, to (interrupted) coarsening, or spatiotem-
poral chaos. Progress has been achieved for wide classes of
models [11,16], the case of two-dimensional (2D) systems
[17,18] which are invariant under arbitrary shifts of the
“order parameter” i — h + const [19] remaining a chal-
lenge (particularly, for nonvariational dynamics). For these,
the ensuing cell pattern fills space and can be thought of as
a foam, so that the time evolution of its topological
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properties can be meaningful. While for coarsening sys-
tems driven by curvature as in phase separation, topological
arguments have enabled determining the dynamics of
domain areas exactly [20], as experimentally verified
[10], a similar approach has not been pursued for the
nonvariational systems just mentioned.

In this Letter, we undertake such an approach.
Specifically, we produce a cellular surface pattern at
submicron scales by ion-plasma erosion of silicon targets.
Indeed, reactive plasma techniques stand out as efficient
tools for nanostructuring [21]. This system admits an
accurate description [22] by a convective Cahn-Hilliard
(CCH) equation [23], which is a paradigmatic model for
nonvariational coarsening systems, from step instabilities in
epitaxy to dewetting of a thin film flowing down an
inclined plane, see, e.g., [24] and references therein. We
analyze the topological properties of the cellular pattern,
and obtain as a consequence the coarsening law for the
domain size. Thus, we show that, for nonvariational
pattern-forming systems, a topological study of the dynam-
ics provides a complementary route to geometrical descrip-
tions of the coarsening behavior. Technically, we provide
an alternative route to derive the coarsening exponent for
the CCH equation, complementary to other approaches,
e.g., through phase-diffusion equations. This might prove
of interest in the study of challenging related systems,
e.g., of the Kuramoto-Sivashinsy (KS) type [14].

Experimentally, we erode Si(100) targets with a diameter
of 3 inches magnetically confined Art ion plasma in a
commercial Pfeiffer PLS 500 chamber. The ion pressure is
5% 107 mbar, and the source is a radiofrequency
Hiittinger operating at 25 Watt, with a frequency of
13.56 MHz. After sputtering, the central part of the wafer
was analyzed by atomic force microscopy (AFM) in
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tapping mode with a silicon cantilever. In Fig. 1 (left
column), we show the evolution of an initially atomically
flat target under these conditions, for increasing irradiation
times. A cellular structure of submicron-sized domains
forms, and evolves with time, that indeed resembles those
observed in foams, soap froths, tissues, or nanoparticle
networks [1-4]. The domains are not homogeneous in
height. Rather, smooth wells (darker regions) are separated
by abrupt boundaries (brighter lines). Hence, the system is
three-dimensional although the pattern can be characterized
in 2D [25], where it is essentially space filling [26].
Morphological processing [27] of the AFM images allows
us to determine the precise shape and in-plane organization
of the cells or domains. These arrange in a disordered
manner, requiring a statistical analysis of their distribution.
Indeed, the topological properties of 2D cellular structures
(in general) and foams (in particular) are well characterized
by a few elegant relations involving various features of the
domain distribution, like average area and average number
of sides. Some are formulated independently of time, like,
Lewis, Aboav, and Lemaitre’s laws, while other incorporate
dynamics explicitly, like that of von Neumann and Mullins
[1-3]. Thus, Lewis’ law relates empirically the average area
of an n-sided domain, A,, with the deviations of n from its
expected value, 71, through
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Here, A reflects correlations between cell area and topology
(number of sides) [3], and p, is the variance of the
distribution of the number of sides, p,. Meanwhile,
Aboav’s law describes topological correlations among
different cells by relating the average number of sides
m,, of cells surrounding an n-sided domain, with n [28]
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FIG. 1 (color online). Top-view comparison between exper-
imental surfaces (left column) and numerical integration of
Eq. (6), central column, at two irradiation times as indicated.
The lateral size of all figures is 50 gm. The right panels show the
height distributions for the simulation (black solid line) and
experiment (dashed blue line) at the corresponding times.
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where a and b are numerical constants that depend on
correlations in p,. In turn, Lemaitre’s law relates y, with
the probability pg for a domain to have exactly six
neighbors, different cellular structures, from cracks to
biological tissues, corresponding to different points on
an universal curve [3]. Although lacking a closed form, it
has simple limiting behaviors, see Fig. 2(c):

U, =1—pg, if pg > 0.7 (low disorder), 3)

Uy = 5. if 0.3 < pg < 0.7 (low order).  (4)

27 pg
Finally, von Neumann—Mullins’s (VNM) law incorporates
the time evolution of the domain distribution (coarsening)
through that of the area of an n-sided cell, namely,
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FIG. 2 (color online). Experimental confirmation of Lewis’ (a)
and Aboav’s (b) laws. For the sake of clarity, we show n x m,, vs
n. (c) Verification of Lemaitre’s law for experiments (large
symbols) and simulations of Eq. (6) (small circles). In both
cases, points evolve from (more ordered) low u,-high p¢ regions
to (more disordered) high y,-low pg regions. At late times in the
coarsening regime, simulation points fluctuate, but stay within
the same region of the curve. Units are arbitrary if not specified. If
not displayed, the error bar is smaller than the symbol size.
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where K is a positive constant. This equation has been
derived physically for systems in which domain motion is
curvature driven, in two [6,7] and three dimensions [29].
Nevertheless, it has been proven widely valid, at least on
average, for many other cellular systems [3].

Figure 2 shows the confirmation of Egs. (1), (2),
and Lemaitre’s law for our experiments (we discuss the
vNM law below). Note that, their range of applicability
having been extensively studied [30], frequently these
laws are considered statically, except for a few
examples [3]. Here, we find that they also hold at different
times. In Fig. 2(a), lines are fits of Eq. (1): A,(3h) =
0.067n — 0.205 {regression coefficient (rc) = 0.99951,
reduced(r)-y* = 0.15, see [31], [25] for details} and
A,(6h) =0.148n — 0.537 (rc = 0.99676, r-x*> = 0.93).
Likewise, in Fig. 2(b), lines are fits to Eq. (2): m,(3h) =
5.127 + 6.636/n (rc = 0.998, r-y*> = 0.62) and m,,(6h) =
5.282 +5.186/n (rc = 0.9991, r-y*> = 0.68).

As seen in Fig. 2, Lewis’ law fits accurately the data for
4 < n < 10. In other systems [5], systematic deviations for
all n indicate that physical forces must be considered,
besides topological constraints. In our case, the deviations
for short and large n are statistical. The validity of Lewis’
law is, in principle, restricted to 2D patterns determined
solely by the mathematics of space filling. Although the
eroded structures are really 3D, the results confirm that the
2D approximation is reasonable. Similarly, Fig. 2(b) shows
that the experiments also can be fit by Aboav’s law. Line
crossing at n, =4.2 in Fig. 2(a) suggests this number,
rather than six, as an effective value that separates coars-
ening from shrinking domains in the VNM law. Similar
effects occur, e.g., in soap froths [32]. In our case, they may
indicate deviations from curvature-driven cell motion. Also
note how, while the mean areas A,, change with time (from
3 h to 6 h), the correlations m,, do not. Thus, the coarsening
process affects the size of the structure, but not so much the
correlations among neighboring cells. Regarding the p,
distribution, Fig. 2(c) shows that the experiments follow
Lemaitre’s curve, the structure becoming more disordered
with increasing time.

We can formulate a continuum description of the
experimental system that incorporates its main dynamical
constraints: (i) the net amount of material is not conserved;
(ii) the system is isotropic, and (ii) invariant under arbitrary
translations, & — h + const. Under the morphological
instability inducing the experimental cell structure, these
constraints lead, via a multiple-scales expansion, to the
evolution equation [22]

dih = = V2h — KV*h + A(Vh)* + 1,V (Vh)?
+ A3(Vh)2V2h, (6)

where coefficients v and K are positive and higher order
terms are neglected. For 4, = 0, Eq. (6) is an isotropic, two-
dimensional form of the CCH equation for which a number
of important properties, like the value of the coarsening
exponent, have not been obtained previously. Taking
simultaneously 13 = 0 yields the KS equation [33].

In the context of ion-erosion models, all terms in Eq. (6)
admit physical interpretation [34]. The first term on the
right-hand side implements the unstable dependence of the
sputtering yield with local curvature. The second term
accounts for stabilizing surface-diffusion currents, induced
by temperature and irradiation. That with coefficient A
reflects the fact that, locally, erosion proceeds along the
local normal direction, usually inducing late-time satura-
tion of the amplitude [35]. The 4, term arises from local
redeposition and surface-confined transport of eroded
material [36], while the higher order 1; term stems from
the interplay between the latter mechanisms and irrevers-
ible erosion [36].

All coefficients appearing in Eq. (6) can be determined
using an inverse method, as shown in [22]. After rescaling
to set the coefficients of the linear terms to unity, we obtain
A= -0.05, 1, =0.04, 13 = —0.05, implying that, to non-
linear order, surface-confined transport and irreversible
erosion are equally important for the surface dynamics.
In Fig. 1 (central column), we show top views of the
numerical integration of Eq. (6) (starting with a small
amplitude random initial condition), showing good quan-
titative agreement with the experimental AFM images with
respect to the full 3D shape of the morphologies. Further
comparison is enabled by the height distributions P(h) and
the radial average of the power spectral density (PSD),
S(q,t) = (h(q,t)h(—q, 1)), where h(q,?) is the Fourier
transform of the surface height. We compare the exper-
imental and model behavior of P(h) (Fig. 1) and S(q, 1)
(Fig. 3) at several times during the system dynamics.
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FIG. 3 (color online). Radially averaged PSD, S(g,t), for
experiments and model Eq. (6) at two different irradiation times,
as shown in the legend. Agreement is obtained, except for
g <3 um™', at which surface positions are uncorrelated. Data
for ¢ > 30 um~' may show tip convolution and aliasing effects.
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Agreement indeed allows us to consider Eq. (6) as an
evolution equation for the experimental foam.

The shift in the main broad peak of the PSD to small ¢
values for increasing time relates with coarsening of the cell
size. Pursuing this morphological description usually
requires use of direct approaches [15-18] based on the
multiple-scales properties of the interface equation,
Eq. (6). Here we turn, rather, to a comparative study of
the topological properties of experiments and model, from
which the coarsening properties will be derived. Note, in
principle we do not know a priori the dynamic law control-
ling the evolution of the cell structure, which is a collective
property of the highly nonlinear Eq. (6). Reports are available
on nanostructure formation by reactive plasma techniques
[21] in which their space ordering is assessed by topological
analysis like Voronoi tessellations [37,38]. However, in our
case, cells are not introduced for the analysis, but rather are
evolving physical objects. Further, no prior connection seems
available between topological properties and morphological
ones for pattern-forming systems like the CCH equation.

We process [25,27] the simulation images of the cell
structure using the exact same procedure as employed for
the experimental topographies. A compact summary of
results is in Fig. 2(c), where the time evolution of the
experimental domain distribution encoded by Lemaitre’s
law is seen to be closely matched by the simulations.
During the evolution, cells become wider on average, and
increasingly disordered. In Fig. 4(a), we show the time
evolution of the mean cell area. For intermediate times
t >3 h, it grows linearly; thus, the typical domain size
scales with time as [ ~ ¢'/2, and the coarsening exponent
equals 1/2 [39]. This exponent value can be obtained
combining Lewis’, Lemaitre’s, and von Neumann-Mullins’
laws with the substitution 6 — n,. = 4.2. The space filling
condition implies that [40]
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FIG. 4. (a) Time evolution of the mean cell area, A(¢). After an

initial transient, the system enters the coarsening regime [which,
as predicted by Eq. (9), scales linearly with time]. (b) Topological
entropy, Eq. (10), vs time. The region in which coarsening takes
place is the same as the region where the entropy reaches its
maximum stationary value.

where A, is the total area and N is the number of cells.
Taking time derivatives and using Eqgs. (5) and (7),

dA dp,
E:Zn:K(n—nc)pn +zn:An T )

From Fig. 2(c), we see that, after an initial transient, the
distribution of sides evolves into a time-independent form
earlier than the area distribution [after 3 h both the
experimental as well as the simulation points fluctuate
around the same values of pg and u,, meaning that p,,(¢)
hardly changes]. Thus, we can assume that dp,,/dt = 0 and
hence, Eq. (8) reduces to the simple coarsening law

dA -

o =K(n-n,)=>A~t, 9)
in agreement with Fig. 4(a). For 2D grain growth, the final
equality in Eq. (9) is known as the “parabolic law”. It was
proven by Mullins [7,41] under a scaling assumption on the
cell-boundary velocity. However, as noted above, in our
experiments and model we do not know a priori what the
dynamics of the cells are. Hence, our result can be
interpreted as support for an evolution of the cell sides
driven by mechanisms, not necessarily curvature, that are
consistent with Mullins’ scaling.

As in Mullins’ proof [41], we are imposing a steady state
condition on p, (). Additional support for this assumption
comes through the entropy of the distribution of sides as
(alternative definitions can be employed [42]):

S=-) palogp,. (10)

Actually, Lewis’ law can be derived from a variational
principle according to which the entropy of the structure
is maximized under area conservation, space filling, and
other topological constraints (for instance, that the mean
number of sides is six) [40]. At steady state, S reaches a
constant maximum value. In Fig. 4(b), we plot the entropy for
Eq. (6). Clearly, it is maximized at long times where
coarsening takes place, justifying our steady-state
assumption. Note that this topological description of coars-
ening becomes quite different from (albeit complementary
to) that based on phase-diffusion equations [11,16—18]. In the
latter, the coarsening exponent is determined by the rate of
scape of the system from solutions to the corresponding
stationary equation. Topologically, it becomes, rather, an
expression of the cell distribution having reached a steady
state with a maximum entropy.

In summary, we have shown that foamlike structures
can be obtained at submicron scales in a system in which
the dynamical process differs from soap froths or metallic
foams, not being necessarily controlled by curvature-driven
domain growth. Physically, morphology does seem to
arise as an interplay between irreversible erosion and
surface-confined transport. We have obtained a continuum
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description of the cellular structure through an evolution
equation that is strongly nonvariational, thus related with a
class of coarsening systems that remain a theoretical
challenge in the wide context of pattern formation. In turn,
the dynamical study of the topological properties of the
cellular structure allows us to derive the value of the
coarsening exponent. Thus, while a number of assumptions
remain to be understood from a more fundamental or
rigorous point of view, our Letter puts forward the use of
topological characterizations to classify pattern dynamics
far from equilibrium, in particular, for classes of systems
that remain not completely understood, such as the KS and
related systems [43]. An additional benefit of the approach,
to be explored further, is its applicability to higher dimen-
sional foams [29,44,45].
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