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So far, feedback-driven systems have been discussed using (i) measurement and control, (ii) a tape
interacting with a system, or (iii) by identifying an implicit Maxwell demon in steady-state transport. We
derive the corresponding second laws from one master fluctuation theorem and discuss their relationship. In
particular, we show that both the entropy production involving mutual information between system and
controller and the one involving a Shannon entropy difference of an information reservoir like a tape carry
an extra term different from the usual current times affinity. We, thus, generalize stochastic thermody-
namics to the presence of an information reservoir.
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A deep relation between information theory and stat-
istical physics has been apparent from the very conception
of the former in Shannon’s classical formulation [1,2]. One
explicit manifestation is Bennett’s insight on how
Landauer’s result on the thermodynamic cost of erasing
memory exorcises Maxwell’s demon [3,4]. While, thus, the
universal validity of the second law has apparently been
restored, exploring the specific relationship between infor-
mation theory and thermodynamics particularly in small
systems has become a very active field not the least since
ingenious experiments with single colloidal particles pro-
vide beautiful illustrations and a test of these concepts
[5,6]. If the arguably bewildering plethora of recent
theoretical work in this field [7–34] is tentatively classified
into three main approaches, an important question on the
uniqueness of the second law arises as follows.
In the first and most prominent approach, the classical

ideas of Maxwell and Szilard are implemented in an
explicit feedback scheme where immediately after a meas-
urement some parameters of the device are altered depend-
ing on the outcome of the measurement [7–23]. The
subsequent evolution of the system, thus, depends on the
state after the measurement and the new control parameter.
For such a setup, Sagawa and Ueda have derived an integral
fluctuation theorem (FT) [11]. The corresponding inequal-
ity implies that the extracted work, which from the
perspective of the first law is compensated by a corre-
sponding heat transfer from the bath, is less than the
information acquired in the measurement [10]. This
inequality, thus, generalizes the second law to such feed-
back-driven schemes. Since the thermodynamic costs of
neither the measurement nor of the erasure of the acquired
information are included, the analysis is necessarily some-
what incomplete from a thermodynamic point of view.
A second approach where the system is allowed to

interact explicitly with an information storage device such
as a tape consisting of a sequence of bits overcomes this
deficiency. In such a scheme, an inequality has been

derived that shows that the work extracted from a heat
bath is necessarily less than the information theoretic
entropy difference between outgoing and incoming tape
[24] (see also Refs. [25,26]). How is this inequality related
to the one derived in the first approach? Does it also follow
from an underlying fluctuation theorem?
In the third approach, “ordinary” transport through a

device such as a quantum dot controlled by a gate is
considered [27,28]. The corresponding nonequilibrium
steady state (NESS) complies with the well-established
rules of stochastic thermodynamics including a well-
defined rate of thermodynamic entropy production [35].
A posteriori, however, a term in the entropy production is
interpreted as an “information current,” which is related to
an idealized feedback procedure happening much faster
than the time scales for the transitions between states.
Again, the question arises whether and how the genuine
thermodynamic entropy production of a NESS relates to
the second laws discussed within the first two approaches.
A recent work in this direction compares this genuine
entropy production with the one arising from the first
approach by considering two models with similar dynamics
that can be either driven by an input of chemical work or by
feedback [29].
In this Letter, we will show that the second laws arising

from these three approaches are in fact three different
inequalities involving three different quantities each bound-
ing the maximal extractable work from such devices. We
will do so by first discussing the simplest paradigmatic
device based on a two-level system from all three per-
spectives. For a system with an arbitrary number of states,
we then derive one master FT that can be specialized to
yield the three second laws pertaining to the three per-
spectives discussed above. On the basis of these insights,
we can thus generalize stochastic thermodynamics to
include an information reservoir, like a tape that mediates
transitions between a pair of states in a general NESS.
Surprisingly, differing from the usual thermodynamic
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entropy production that can be written as a sum of currents
multiplied by affinities, the contribution due to the infor-
mation reservoir does not involve a current.
Let us set the stage with a paradigmatic two-level system

[10,29,36,37]. The upper level u has energy E > 0, and the
lower level d has energy 0. The system is connected to a
heat bath at temperature T so that the transition rates fulfill
the detailed balance relation kþ=k− ¼ expð−EÞ, where we
set Boltzmann’s constant multiplied by the temperature to
kBT ≡ 1, kþ is the transition rate from d to u, and k− is the
reversed one. The feedback is introduced in the following
way. After every period t, a measurement gives information
to a controller whether the state of the system is d or u. If
the measurement is error free and if at the end of the time
interval the system is at u, the energy of the upper level is
lowered to 0, leading to the extraction of work E.
Furthermore, the energy of the empty state is elevated to
E at no cost. This instantaneous change in the energy levels
of the system corresponds to an effective jump from state u
to state d, because after the energy levels are switched the
labels are also switched with d always representing the state
with energy 0 and u the state with energy E.
More generally, we assume a probability of a measure-

ment error given by ϵ so that if the state at time t is x ¼ u
(x ¼ d) the measurement yields y ¼ u (y ¼ d) with prob-
ability 1 − ϵ and y ¼ d (y ¼ u) with probability ϵ.
Moreover, for y ¼ u the energy levels are interchanged
and for y ¼ d they remain fixed. Note that whenever an
error occurs the initial state in the next time interval is u.
Hence, the system reaches a periodic steady state for which
the probability of finishing the period at state u is

pt ¼ pþ ðϵ − pÞ expð−ktÞ; (1)

where k≡ kþ þ k− and p≡ kþ=k. The mean extracted
work per time interval t is given by

Wt ¼ E½ptð1 − ϵÞ − ð1 − ptÞϵ� ¼ E½pt − ϵ�: (2)

The probability of the measurement outcome y ¼ u is

qt ¼ ptð1 − ϵÞ þ ð1 − ptÞϵ ¼ pt þ ϵð1 − 2ptÞ; (3)

whereas the probability for y ¼ d is 1 − qt. Therefore, the
Shannon entropy of the controller is Hy¼HðqtÞ≡−qt lnqt−ð1−qtÞlnð1−qtÞ. This Shannon entropy con-
ditioned on the state of the system x becomes Hyjx ¼ HðϵÞ
(see the Supplemental Material [38]). Using the standard
definition for the mutual information It between the system
x and the controller y [39], we obtain It ≡Hy −Hyjx ¼
HðqtÞ −HðϵÞ. The second law of thermodynamics for
feedback controlled systems then implies [10]

It −Wt ¼ HðqtÞ −HðϵÞ −Wt ≥ 0; (4)

i.e., the extracted work is bounded by the mutual informa-
tion due to measurements.
This very model allows a second interpretation that leads

to another second-law-like inequality; see Fig. 1. We now
consider a system connected to a thermal bath, mediating
the interaction between a work reservoir and a tape (a
sequence of bits), which corresponds to a simplified
version of the original model proposed in Ref. [24]. In
this interpretation, each bit from the tape interacts for a time
t with the system. During this time interval, the bit state
0 (1) is coupled to the system state d (u) so that when the
system jumps from d (u) to u (d) the bit changes from 0 (1)
to 1 (0). After interacting with the system for a time t, the
bit moves forward, and a new bit comes to interact with the
tape. This new incoming bit generates effective transitions
by determining the initial state of the system for the
subsequent interaction time interval, where for an incoming
0 the system will start at d and for an incoming 1 at u. More
precisely, if the system finishes in state u (d) and the new
incoming bit is 0 (1) then the energy levels are inter-
changed, leading to an amount of energy E extracted from
(delivered to) the system. If the system finishes in state d
(u) and the new incoming bit is 0 (1), then the energy levels
remain fixed and no energy is exchanged with the work
reservoir. Furthermore, the probability of an incoming 1 is ϵ
and, hence, the Shannon entropy of the incoming tape is
HðϵÞ. On the other hand, the outgoing tape is a record of the
interaction with the system, with the probability of a 1
being pt and the Shannon entropy HðptÞ. Importantly, in
this second interpretation, we have an autonomous system
with no explicit measurement and feedback; the new
incoming bit simply determines the initial state of the
system for the coming interaction period.
Mandal and Jarzynski [24] showed that a second-law-

like inequality bounds the work (2) delivered to the
reservoir by the Shannon entropy difference between the
incoming and the outgoing tapes, i.e.,

HðptÞ −HðϵÞ −Wt ¼ DKLðϵjjpÞ −DKLðptjjpÞ ≥ 0; (5)

where DKLðxjjyÞ≡ x lnðx=yÞ þ ð1 − xÞ ln is the Kullback-
Leibler distance. Hence, as our first result, we realize that
this two-level system allows for two different

FIG. 1 (color online). Two-state model with feedback at fixed
time intervals interpreted as a tape interacting with a heat bath and
a work reservoir. The full arrow represents an interaction time
interval t, and the dotted arrow represents an instantaneous
effective transition due to the new incoming bit.
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interpretations leading to two different second-law-like
inequalities. Since HðptÞ ≤ HðqtÞ (Supplemental
Material [38]), the bound on the extracted work in
Eq. (5) is tighter than that in Eq. (4). Moreover, while
the mutual information It is always non-negative, HðptÞ −
HðϵÞ can be negative. Hence, for pt < ϵ < 1=2 the work
delivered to the system −Wt is used to erase information,
with the reduction of the Shannon entropy of the tape being
bounded by −Wt, as given by Eq. (5) (see Refs. [24,25]).
Such information erasure cannot be addressed within the
second-law inequality of Eq. (4) as It ≥ 0.
Preparing for a third perspective on this model as a

NESS, we assume that the feedback procedure does not
take place at constant time intervals t but that it is rather a
Poisson process with rate γ. Consequently, the previous
expressions obtained for a fixed t must be weighted with
e−γt. The average extracted work then becomes with Eq. (2)

Wτ ≡ γ

Z
∞

0

dt expð−γtÞWt ¼ Eðpτ − ϵÞ (6)

where τ≡ k=ðkþ γÞ and pτ ≡ τpþ ð1 − τÞϵ. Using the
inequality

R
∞
0 dtγ expð−γtÞHðptÞ ≤ HðpτÞ for the concave

function HðxÞ, the second-law inequality of Eq. (5) can be
written in the form

s
:
1 ≡ γðHðpτÞ −HðϵÞ −WτÞ ≥ 0; (7)

where s
:
1 represents a rate of entropy production.

Analogously, the inequality involving the mutual informa-
tion of Eq. (4) becomes

s
:
2 ≡ γðHðqτÞ −HðϵÞ −WτÞ ≥ 0; (8)

where qτ ¼ pτ þ ϵð1 − 2pτÞ.
The NESS description of this model then follows by

considering two states d and u with two links between
them. One link is related to the thermal reservoir, and the
corresponding transitions rates are kþ and k− as before. The
other link is related to the effective transitions mediated by
the tape with transition rates γϵ and γð1 − ϵÞ. The master
equation for this model is analogous to the master equation
for the previous model with feedback. More precisely, the
stationary state probability distribution is Pu ¼ pτ. The rate
at which work is delivered to the mechanical reservoir is
w
: ¼ γWτ. The usual rate of thermodynamic entropy pro-
duction specialized to this NESS becomes [35]

s
: ¼ k½pτð1 − pÞ − ð1 − pτÞp� ln

1 − p
p

þ γ½pτð1 − ϵÞ − ð1 − pτÞϵ� ln
1 − ϵ

ϵ

¼ γ

�
ðpτ − ϵÞ ln 1 − ϵ

ϵ
−Wτ

�
≥ 0: (9)

For ϵ → 0 this thermodynamic entropy production diverges
in contrast to both Eq. (8), for which ϵ ¼ 0 implies error
free measurements, and Eq. (7) for which ϵ ¼ 0 means a
fully ordered incoming tape. In the first case, the physical
reason for this very different behavior comes from the fact
that Eq. (8) does not contain the thermodynamic cost of
acquiring or erasing information [16,21,29]. In the second
case, a remarkable result is obtained if we compare Eq. (7)
with Eq. (9). Let us consider ϵ < pτ < 1=2 so that the flow
of work to the mechanical reservoir is positive. The
minimal rate of work w

:
c that would have to be provided

by the mechanical reservoir in order to restore the original
tape (with a fraction ϵ of 1’s) from the processed tape (with
a fraction pτ of 1’s) is obtained in the adiabatic limit k ≫ γ
with E ¼ ln½ð1 − ϵÞ=ϵ�. According to Eq. (7), it is given by
w
:
c ¼ γðpτ − ϵÞ ln½ð1 − ϵÞ=ϵ� ≥ γðHðpτÞ −HðϵÞÞ. Thus, if

we apply Eq. (7) twice, first for extracting work at the
expense of increasing the entropy in the tape and second for
restoring the original tape by applying mechanical work in
the limit k ≫ γ, we find for the total entropy production the
bound of Eq. (9). Hence, the NESS description contains
the full thermodynamic cost including the one for restoring
the original tape. This observation shows that in a fully
integrated description, an error-free or perfect tape scheme
implies an infinite thermodynamic cost somewhere else, as
noted previously for a particular case study in Ref. [28].
Leaving the paradigmatic two-state system, we now

derive a master fluctuation theorem for a general
Markov process with transition rates from generic states
i to j denoted by Wij, which will lead to the generalized
version of the three entropy productions of Eqs. (7)– (9). In
stochastic thermodynamics, the transitions rates are related
to reservoirs, with the ratio Wij=Wji given by the local
detailed balance condition [35]. For simplicity, we consider
the case where there is at most one link for each pair of
states except for one pair. Denoting the two states of this
special pair by u and d, besides the ordinary transition rates
Wud and Wdu (which can be zero), there are also rates Rud
and Rdu, which will become related to an information
reservoir.
In order to derive the master FT, it is convenient to

formally duplicate the system; see Fig. 2. We represent the
two copies of the system by the subscripts A and B. The
“internal” transition rates Wij are the same for both sides,
and they involve states with the same subscript, i.e., from
iA to jA or from iB to jB. The transition rates related to
the information reservoir, Rud ¼ Rdd ¼ γð1 − ϵÞ and
Rdu ¼ Ruu ¼ γϵ, must involve states with different sub-
scripts. This description is clearly symmetric with the
stationary state probability distribution fulfilling
PiA ¼ PiB ¼ Pi=2, for all states i. Therefore, the stationary
properties of the duplicated system and of the original one
are the same.
We denote a stochastic trajectory from time 0 to T with

N jumps visiting states xn (with n ¼ 0; 1;…; N) by XT.
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The master FT is derived by considering a reversed
trajectory ~XT subjected to, in general, different transition
rates, denoted by an overline, fulfilling the constraints
W̄ij ¼ Wij and R̄du þ R̄dd ¼ R̄ud þ R̄uu ¼ γ. Considering
the total internal current from i to j

J ij½XT �≡
XN
n¼0

X
C¼A;B

ðδxn;iCδxnþ1;jC − δxn;jCδxnþ1;iCÞ (10)

and the counter of jumps from i to j between the two
replicas

Kij½XT �≡
XN
n¼0

ðδxn;iAδxnþ1;jB þ δxn;iBδxnþ1;jAÞ; (11)

we define the functional

Ω½XT �≡
X
i<j

J ij½XT �αij þ
X0

ij

Kij½XT �βij; (12)

where αij ≡ lnðWij=WjiÞ and βij ≡ lnðRij=R̄jiÞ. The first
sum is over all pairs ij with i < j, and the second
constrained sum is over the states i ¼ u, d and j ¼ u, d
(Kij ¼ 0 if i ≠ u, d or j ≠ u, d). As a main result, we can
show that Ω obeys the integral FT hexpð−ΩÞi ¼ 1, which
implies hΩi ≥ 0, with the brackets representing an average
over all trajectories (Supplemental Material [38]). From this
inequality, the three second-law inequalities can be derived
from three different choices of R̄ as follows (Supplemental
Material [38]).
First, for R ¼ R̄, the well-known standard rate of entropy

production generalizing Eq. (9) follows as

s
: ¼

X
i<j

Jijαij þ J0ud ln
1 − ϵ

ϵ
≥ 0; (13)

where Jij≡PiWij−PjWji and J0ud≡ γðPuþPdÞðpτ − ϵÞ,
with pτ ≡ Pu=ðPu þ PdÞ.
Second, choosing

R̄uu ¼ R̄du ¼ γpτ and R̄dd ¼ R̄ud ¼ γð1 − pτÞ; (14)

we obtain as the generalization of Eq. (7)

s
:
1 ¼

X
i<j

Jijαij þ γðPu þ PdÞ½HðpτÞ −HðϵÞ� ≥ 0: (15)

This second-law inequality generalizes the theory of
stochastic thermodynamics to the presence of an informa-
tion reservoir. In this entropy production, the term related
to the transitions that are mediated by the tape is not the
probability current J0ud multiplied by the affinity
ln½ð1 − ϵÞ=ϵ� that appears in the usual entropy rate (13).
It is rather given by the rate at which the tape is processed
γðPu þ PdÞ, multiplied by the Shannon entropy difference
of the processed tape. Crucially, this quantity is not
antisymmetric and, therefore, it is not subjected to the
conservation laws of probability currents [40,41]. This
observation demonstrates that a formulation of the second
law containing Shannon entropy differences related to
information reservoirs is fundamentally different from
the ordinary thermodynamic entropy production.
The physical meaning of the choice of Eq. (14) becomes

clear if we consider the two-state model again. The FT
leading to the inequality of Eq. (7) is obtained by consid-
ering a reversed trajectory where the probability of a 1 in
the incoming tape is pτ. If we go back to the initial model
with feedback at fixed time intervals t, our FT is obtained
by applying feedback also to the reversed trajectory [19];
however, the probability of an error for the reversed
trajectory is chosen as pτ rather than ϵ. This is different
from the Sagawa-Ueda FT, where there is no feedback in
the reversed trajectory [13].
Third and finally, the NESS version of the Sagawa-Ueda

FT is obtained with transition rates R̄ corresponding to a
“protocol” in the reversed trajectory determined by the
measurements along the forward trajectory [13]. Therefore,
with R̄ud ¼ R̄du ¼ γqτ and R̄uu ¼ R̄dd ¼ γð1 − qτÞ, where
qτ ¼ pτ þ ϵð1 − 2pτÞ, we obtain

s
:
2 ¼

X
i<j

Jijαij þ γðPu þ PdÞ½HðqτÞ −HðϵÞ� ≥ 0; (16)

which becomes Eq. (8) for the two-state model. The
particular term γðPu þ PdÞ½HðqτÞ −HðϵÞ� in the entropy
production s

:
2 accounts for the mutual information between

the system and the information reservoir.
The three different entropy productions obey the

relations

s
: − s

:
1 ¼ γðPu þ PdÞDKLðpτjjϵÞ ≥ 0 (17)

and

s
:
2 − s

:
1 ¼ γðPu þ PdÞ½HðqτÞ −HðpτÞ� ≥ 0; (18)

which show that s
:
1 provides the tightest bound onP

i<jJijαij. On the other hand, there is no general

FIG. 2 (color online). Representation of the formal duplication
of the system. The full circles represent generic states i different
from u and d; the curved lines represent links between states with
nonzero transition rates Wij and Wji; the arrows represent the
transition rates between the replicas, with the full arrows
representing γϵ and the dotted arrows representing γð1 − ϵÞ.
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inequality between s
:
and s

:
2, as noted previously for the

two-state model in the limit k ≫ γ in Ref. [29].
In conclusion, our unified perspective on three different

approaches to feedback-driven systems has revealed that
the corresponding expressions for entropy production are
genuinely different despite the fact that we could derive all
of them from one master FT. Significantly, neither the one
containing the Shannon entropy difference of an informa-
tion reservoir like a tape of bits interacting with the system
nor the one containing mutual information between a
controller and the system can be written in the standard
form of a current times an affinity. This result points inter
alia to a conceptual challenge for a future comprehensive
linear response theory of information processing.
Apparently, an information reservoir like a tape has features
that are fundamentally different from those of a heat or
particle reservoir. Whether allowing the tape to reverse its
direction will suffice to restore an ordinary thermodynamic
behavior as found in the case study [25] remains to be seen.
Finally, the second-law inequality of Eq. (15) provides a
general framework to study the entropic interaction
between a tape and a thermodynamic system. Two exam-
ples are the paradigmatic two-state model where this
entropic interaction generates a flow of work to a mechani-
cal reservoir (or lifts a falling mass [24]) and a refrigerator
powered by it [26].
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