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The cytoskeleton of eukaryotic cells provides mechanical support and governs intracellular transport.
These functions rely on the complex mechanical properties of networks of semiflexible protein filaments.
We study the impact of local network deformations on the scale-dependent mobility of probe particles in
entangled networks of actin filaments using high-bandwidth microrheology. We find that micron-sized
particles in these networks experience two opposing noncontinuum elastic effects: entropic depletion
reduces the effective network rigidity, while local nonaffine deformations of the network substantially
enhance the rigidity at low frequencies, eventually leading to a size-independent response and strong
violation of the generalized Stokes formula. We show that a simple model of lateral bending of filaments
embedded in a viscoelastic background leads to an intermediate scaling regime for the apparent elastic
modulus G0ðωÞ ∼ ω9=16, closely matching the experiments. These results demonstrate that nonaffine
bending deformations can be dominant for the mobility of objects of the size of vesicles and organelles in
the cell.
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Living cells are highly structured composites containing
a multicomponent polymer network, the cytoskeleton,
consisting of the filamentous proteins F-actin, microtu-
bules, and intermediate filaments [1–3]. Characteristic
length scales range from monomer sizes of ∼50 Å through
network mesh sizes of ∼100 nm to filament persistence
lengths of μm to mm. The mechanical response of the
cytoskeleton therefore depends on the time and length
scales on which it is probed. Vesicles and organelles, for
instance, which move within the cytoskeleton, are tens of
nanometers to micrometers in size, and therefore experi-
ence local response that may differ substantially from
continuum mechanics. Elastic moduli inside cells have
been estimated by video microrheology, analyzing fluctua-
tions of probe particles [4]. The structural complexity of
cells and intrinsic nonequilibrium fluctuations, however,
can confound such measurements [4,5]. Microrheological
studies have also been performed on reconstituted cytos-
keletal networks, in particular F-actin [6–15]. Even simple
F-actin networks show a discrepancy between local and
bulk response [6,7,11,15–17], the physical origin of which
has remained obscure. The large persistence length of
cytoskeletal polymers implies that filament bending will
be part of the local response. Such nonaffine deformations
have been treated theoretically and in simulations [18–23].
Direct evidence of nonaffine effects in cytoskeletal net-
works, however, has been limited [24], and the impact of
nonaffinity on local mechanical properties is not known.
Here we combine bulk rheology with microrheology

measurements using optically trapped beads of various

sizes to study the scale-dependent mechanics of cytoske-
letal F-actin networks with high bandwidth. We use dual
optical tweezers to measure material response with two-
particle microrheology (2p MR) [16,25], which infers bulk
properties from particle-pair correlations and which is
insensitive to the beads’ local surroundings or bead size
[16,25]. We compare this, in the same experiment, with
one-particle microrheology (1p MR) [12,14], which is
sensitive to local response.
We find evidence for two local noncontinuum elastic

effects. The particles introduce local pockets of reduced
polymer concentration by entropic depletion, leading to a
reduction of the local modulus. Surprisingly, however, the
local stiffness at intermediate and low frequencies is
enhanced. Such an effect has been suggested to exist on
theoretical grounds [26] in the pure elastic limit, as a result of
filament bending, but this has never been verified. We
introduce a model for frequency-dependent nonaffine effects
due tobendingoffilaments,which leads toanapparent scaling
regimeG0ðωÞ ∼ ω9=16, closely matching the experiments. At
even lower frequencies, the response converges toward a
particle-size independent local stiffness for small particles.
Samples were prepared by polymerizing rabbit skeletal

muscle actin in F-buffer (2 mM HEPES, pH 7.5, 50 mM
KCl, 2 mM MgCl2, and 1 mM Na2ATP [8], chemicals
from Sigma/Aldrich, USA). Actin was polymerized for
∼1 h in glass and double-stick-tape chambers with
silica probe beads (Kisker Biotech, Germany, radii
R ¼ 0.26, 0.51, 1.28, and 2.5 μm, polydispersity 5%).
The particles were larger than the average network mesh
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size, ξ ≈ 0.3=
ffiffiffiffiffi
cA

p
(in μm, with concentration in mg=ml)

[27]. Actin concentrations cA were in the range
0.5–2 mg=ml. Bulk rheology was performed in a cus-
tom-built piezorheometer [28,29] by oscillating one glass
plate sinusoidally (0.1 Hz < f < 10 kHz) normal to its
surface with an amplitude of 1 nm. Stress transmitted to a
second parallel plate was measured by a piezoelectric
element. Squeezing flow leads to a shear strain amplitude
of ∼10−6, ensuring linear response. Microrheology was
performed with a custom-built dual optical tweezers setup
[30]. Pairs of beads, at least 10 bead diameters away from
any surface, were weakly trapped using near-IR lasers
(1064 and 830 nm) with trap stiffness below
3 × 10−6 N=m. Position fluctuations were detected by
quadrant photodiodes at a sampling rate of 195 kHz and
converted to storage and loss shear moduli using the
fluctuation-dissipation theorem and the generalized
Stokes relation [12]. 1p MR moduli represent averages
over x and y displacements of particles, while 2p MR
moduli were derived from the correlated motions of two
particles parallel to the line connecting their centers. Fluid
inertia was negligible for the separation distances r used

here (r ¼ 10–15 μm) [31,32]. We typically took data of
10 bead pairs for each distance. Each experiment was
reproduced at least three times with new samples. Thus
1p MR data are averaged over > 40 data sets, 2p MR
data over >10 data sets for each distance. As seen before
[12], the distribution of response functions in different
locations and samples was relatively narrow (data
not shown).
Storage and loss shear moduli G0ðωÞ and G00ðωÞ from

2p MR were independent of particle size and agreed well
with macroscopic moduli [Figs. 1(a) and 1(b)], confirming
that 2p MR reliably measures bulk properties. In contrast,
shear moduli obtained from 1p MR were significantly
smaller than the macroscopic moduli [Figs. 1(a) and 1(b)],
even for the largest particles (R ¼ 2.5 μm), which are
17-fold bigger in diameter than the mesh size (∼300 nm)
but still smaller than average filament length (∼20 μm).
To understand the origin of the difference between local

and bulk response, we used particles of different sizes.
With reduced particle radii of 2.5 to 0.26 μm, G00ðωÞ from
1p MR decreased further in amplitude (Fig. 2), consistent
with earlier studies of actin networks [6,7,11,15–17]. At
frequencies >10 kHz, both the local and macroscopic loss
moduli scaled with frequency as G00ðωÞ ∝ ω3=4 [Fig. 1(b)].
In this regime, the viscoelastic response is dominated
by the relaxation of thermal bending fluctuations of
individual filament segments between entanglement points
[8,33]. Here, moduli are expected to be proportional to
polymer concentration. Thus, lower local moduli suggest a
reduced polymer concentration near the probe particles.
The likely explanation for this is entropic depletion:
particles restrict conformations of polymers. Such an
effect has been observed for flexible synthetic polymers

(a)

(b)

FIG. 1 Local shear elastic moduli of entangled solutions
of 1 mg=ml F-actin are smaller than macroscopic moduli: (a)
storage moduli G0ðωÞ, (b) loss moduli G00ðωÞ. Shear moduli from
2p MR (solid line: particle radius R ¼ 2.5 μm; dashed line:
R ¼ 0.51 μm, particle distances 10–15 μm) agree with bulk
rheology (open circles); 1p MR measures smaller moduli (gray:
R ¼ 2.5 μm). Power-law slope of 3=4 indicated, solvent viscosity
contribution, G00

waterðωÞ, also indicated. Inset: schematic of
probe particles (radius R) at distance r, with depletion shell of
thickness Δ.

FIG. 2 (color online). Loss moduli from 1p MR reveal actin
depletion near beads. G00ðωÞ for 1 mg=ml F-actin. 1p MR:
particle radii R ¼ 0.26, 0.51, 1.28, 2.5 μm (lines), bulk rheology
(open circles). Solvent viscosity is indicated. Inset: Δ calculated
from microrheology data > 10 kHz, plotted versus particle
radius, actin concentrations cA ¼ 0.5 (squares), 1 (triangles),
and 2 mg=ml (circles). Horizontal lines mark network mesh
sizes: dotted 0.5, dashed 1, dash-dotted 2 mg=ml; solid line is
particle radius R.

PRL 112, 088101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

28 FEBRUARY 2014

088101-2



[34] and DNA [35]. The thickness of the depletion zone Δ
can be estimated from local and macroscopic moduli at
high frequencies [17,35]. Our 1p MR data can be mapped
onto the 2p MR data using a simplified depletion model:
each particle is assumed to be surrounded by a sharply
defined, completely polymer-depleted shell of solvent of
thickness Δ [25] [Fig. 1(b), inset]. The thickness Δ was
calculated [36] from the ratio G00ðωÞ2p MR=G00ðωÞ1pMR at
frequencies ω > 10 kHz using Eq. (3) from Ref. [35],
which was derived in [37], in which the medium sur-
rounding the bead is modeled as a viscous shell of
thickness Δ that is surrounded by a stiffer viscoelastic
continuum. We find that Δ grows with particle size (Fig. 2,
inset), consistent with previous reports [17]. Around
spherical particles in a solution of semiflexible polymers,
Δ is expected to be of order the particle size [38,39]. Near
a flat wall, Δ is predicted to be of order the polymer length
or persistence length, whichever is shorter [40]. This
depletion range exceeds that seen with entangled flexible
polymers, where Δ ≈mesh size [34,35]. Local micro-
rheology measurements for cytoskeletal polymer networks
are therefore always affected by depletion, unless poly-
mers are attracted by the particles [10].
The local storage modulus G0ðωÞ measured with 1p MR

exhibits a stronger and more complex particle-size depend-
ence than the loss modulus. At high frequencies, G0ðωÞ from
1p MR is smaller than the macroscopic modulus, similar to
G00ðωÞ [Fig. 3(a)]. At low frequencies, however, the smallest
particles (0.26 and 0.51 μm radius), experience a local elastic
modulus apparently exceeding the macroscopic shear modu-
lus. Moreover, the local response exhibits a weaker frequency
dependence. These surprising observations suggest a second
noncontinuum effect in the interaction with the surrounding
network. We hypothesize that this effect is due to nonaffine
local network deformations resulting from the transverse
bending of filaments as the particle moves. Bending pene-
trates into the network to a depth determined by a balance
between filament bending and elastic deformation of the
network [19,26]. Moving particles push against these stiff
filaments embedded in a matrix, considered here for simplic-
ity as an elastic continuum. For a displacement u, the bending
energy is Ebending ∼ nκu2=λ3, where λ is the length over
which a filament of bending modulus κ bends. The number n
of bent filaments increases with the particle size as n ∼ R=ξ.
To obtain this estimate, we assume that only filaments
oriented nearly perpendicular to the axis of motion are bent
because, with only steric interactions between particles and
filaments, tangential forces on the bead are negligible. The
particle cross section scales as R2, and network mesh density
seen along an axis as 1=ξ2. Each filament extends over of
order R=ξ meshes. Hence, the number of displaced filaments
as the particle moves along one axis scales as R=ξ. Assuming
λ ≫ R, the elastic energy stored in the distorted surrounding
elastic continuum is Eelastic ∼ Gu2λ, where G is the network
shear modulus [41]. Minimizing the sum of these energies
results in a characteristic deflection length [42],

λ0 ¼
ffiffiffiffiffiffi
κR
Gξ

4

r
. (1)

A similar length scale λb ¼
ffiffiffiffiffiffiffiffiffi
κ=G4

p
was found for

bending [43,44] and buckling [45] of microtubules in
the cytoskeleton. Our probe particle experiences a total
restoring force f ∼ −Guλ0. In stiffer media, λ0 will
decrease and will eventually become smaller than particle
radius R. In that case, the matrix dominates the fibers, and
the restoring force will become that of a particle in an
elastic continuum: f ∼ −GuR. Thus, a transition is
expected, when λ0 ∼ R, between particle-size independent
response, dominated by nonaffine filament bending, and
(particle-size dependent) “normal response.” It is qualita-
tively expected that G0ðωÞ is more strongly affected by

(a)

(b)

FIG. 3 (color online). Storage moduliG0ðωÞ from 1p MR reveal
local nonaffine bending of actin filaments. (a)G0ðωÞ for 1 mg=ml
F-actin. 1p MR: particle radii R ¼ 0.26, 0.51, 1.28, 2.5 μm
(lines), bulk rheology (open circles). 3=4 slope indicates expected
high frequency scaling, 9=16 slope expected from our model.
Inset: Convergence ofG0ðωÞ × R at low frequencies. (b) Apparent
elastic moduli determined from 1p MR with different bead sizes,
shifted to account for depletion, plotted against frequency
normalized by 2πR4, showing agreement with ω9=16 scaling
(dashed line). Shift factors were consistent with those observed
between 1p MR G00 curves at high frequencies due to depletion,
corrected for the frequency-axis rescaling. Inset: same data with
G0ðωÞmultiplied by ðωR4Þ−9=16, ω9=16 scaling at intermediate and
ω3=4 scaling at high frequencies.
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local response than G00ðωÞ. At the lower measured frequen-
cies, the macroscopic G0 is still smaller than the macro-
scopic G00 since a plateau has not been reached. Because of
local bending of the primarily elastic filaments, there will
be an enhanced value of G0. This must occur together with
an enhancement of G00, but the relative effect on G0 will be
greater. Since the network shear modulus increases with
frequency, a transition to a local bending-dominated regime
should occur below a characteristic frequency ω0. To
estimate this frequency, we assume that the network
modulus follows a power law G ¼ AcAω3=4, as is typically
found for actin networks [33], with amplitude A. Using
Eq. (1), the crossover frequency below which the filament
bending effects should become apparent, is then of order

ω0 ∼
�

κ

cAξR3

�
4=3

. (2)

As long as λ0 remains larger than R, the probe bead acts
as if it were covered with rigid “bristles” due to the stiff
filaments that spread the force out. In other words, for
frequencies ω < ω0, the bead will behave as if its size were
λ0. The 1p MR analysis, which assumes particle radius R,
will then report an increased local (apparent) modulus,

Glocal ∼
Gλ
R

∼
ðcAωÞ9=16

R3=4 . (3)

Our model thus predicts a local elastic modulus with a
low frequency dependence of ω9=16, which should cross
over to bulk response with ω3=4scaling.
Our data are well explained by this model. The elastic

modulus [Fig. 3(a)] is consistent with a ω9=16 scaling for the
two smallest probes (R ¼ 0.26 and 0.51 μm) over about two
decades. For the intermediate-size particles (R ¼ 1.28 μm)
we find ω9=16 scaling over the whole frequency range. For
the largest particles (R ¼ 2.5 μm), G0ðωÞ ∼ ω3=4, like the
macroscopic modulus. The effect of nonaffine deformations
can be confirmed by collapsing all curves for the different
particle sizes onto a master curve by simultaneously rescal-
ing ω by R4, which is proportional to ω0 in Eq. (2), and
shifting the curves vertically to account for depletion [Fig. 3
(b)]. The resulting curve scales as ω9=16 over a large
frequency range and approaches ω3=4 at high frequencies,
which is emphasized by plotting ðωR4Þ−9=16G0ðωÞ against
ωR4 [Fig. 3(b), inset]. The resulting curve is flat at
intermediate frequencies and crosses over to 3=16 scaling
at high frequencies, consistent with G0 ∼ ω3=4.
For the two smaller beads, the slope decreases further at

the lowest frequencies. Such a phenomenon can be under-
stood, even if no elastic plateau is yet reached. This may
indicate a distinct low frequency regime governed by a
nonaffine length scale λ that saturates to a large length
scale. If this length is intrinsic and independent of the
particle size, then Eq. (3) would result in an apparent
stiffness Glocal that varies inversely with particle size,

corresponding to particle fluctuations that are independent
of size. Interestingly, this is consistent with what we see in
the inset to Fig. 3(a), where G multiplied with R is plotted.
Such a convergence requires that the 9=16 regime gives
way at low frequencies to a weaker dependence on
frequency, corresponding to a stiffening of the response,
relative to the intermediate 9=16 regime, at lower frequen-
cies. As the length λ0 also grows toward lower frequencies,
this stiffening may occur when the transverse filament
bending extends over a range larger than the bead-radius-
dependent depletion zone. It is worth noting that the
observed behavior at the lowest frequencies is particularly
relevant to the standard video range covered by many
passive microrheology methods.
Our results demonstrate that the local response of a

semiflexible polymer network can strongly violate the
generalized Stokes formula for a bulk continuum medium.
Such local noncontinuum effects are particularly relevant in
biopolymer networks, where intrinsic length scales such as
filament persistence length are on the micrometer scale. At
low frequencies (<10–100 Hz) one might also expect a
difference between 1p MR and bulk rheology due to
possible contributions of compressibility [12,14,25]. The
resulting additional compliance from compressibility on
small scales is expected to be visible primarily in 1p MR
rather than 2p MR. The effects we observe at low
frequencies, however, have the opposite trend, i.e., showing
less compliance in 1p MR, which excludes a dominance of
compressibility. Our simple model accounts quantitatively
for the frequency-dependent reduction in the mobility of
the probes due to local bending deformations. Interestingly,
when translating the anomalous response to an apparent
elastic modulus, this model predicts scaling as ω9=16, very
close to the ω1=2 scaling that has frequently been reported
[13,46], but has thus far remained unexplained. Our
observations are at odds with prior suggestions that
1p MR can accurately probe bulk rheology at low frequen-
cies [7]. An implication of our work is that it is not
appropriate to locally treat a semiflexible polymer network
as a continuum, even when probe particles are substantially
larger than the mesh size. This is crucial to understand
before one extends quantitative microrheology to the
complex cytoplasm of cells. Organelles and transport
vesicles, for instance, feel a response that is likely to be
dominated by the local nonaffine bending deformations of
the rather stiff cytoskeletal polymers.
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