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We show that the statistics of fluctuation-driven initial-state anisotropies in proton-proton, proton
nucleus and nucleus-nucleus collisions is to a large extent universal. We propose a simple parametrization
for the probability distribution of the Fourier coefficient εn in harmonic n, which is in good agreement with
Monte Carlo simulations. Our results provide a simple explanation for the 4-particle cumulant of triangular
flow measured in Pb-Pb collisions and for the 4-particle cumulant of elliptic flow recently measured in
p-Pb collisions. Both arise as natural consequences of the condition that initial anisotropies are bounded by
unity. We argue that the initial rms anisotropy in harmonic n can be directly extracted from the measured
ratio vnf4g=vnf2g: this gives direct access to a property of the initial density profile from experimental
data. We also make quantitative predictions for the small lifting of degeneracy between vnf4g, vnf6g, and
vnf8g. If confirmed by future experiments, they will support the picture that long-range correlations
observed in p-Pb collisions at the LHC originate from collective flow proportional to the initial anisotropy.
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Introduction.—A breakthrough in our understanding
of high-energy nuclear collisions is the recognition [1,2]
that quantum fluctuations in the wave functions of projec-
tile and target, followed by hydrodynamic expansion, result
in unique long-range azimuthal correlations between out-
going particles. The importance of these fluctuations was
pointed out in the context of detailed analyses of elliptic
flow in nucleus-nucleus collisions [1,3]. It was later
realized that fluctuations produce triangular flow [2],
which has subsequently been measured in nucleus-nucleus
collisions at RHIC [4,5] and LHC [6–8]. Recently, fluc-
tuations were predicted to generate significant anisotropic
flow in proton-nucleus collisions [9], which quantitatively
explains [10] the long-range correlations observed by
LHC experiments [11–13].
Recently, the ATLAS and CMS experiments reported the

observation of a nonzero 4-particle cumulant of azimuthal
correlations, dubbed v2f4g, in proton-nucleus collisions
[14,15]. The occurrence of a large v2f4g in proton-nucleus
collisions is not fully understood, even though it is borne
out by hydrodynamic calculations with fluctuating initial
conditions [16]. Such higher-order cumulants were origi-
nally introduced [17,18] to measure elliptic flow in the
reaction plane of noncentral nucleus-nucleus collisions and
isolate it from other, “nonflow” correlations. It turns out
that the simplest fluctuations one can think of, namely,
Gaussian fluctuations, do not contribute to v2f4g [19].
Since flow in proton-nucleus collisions is thought to
originate from fluctuations in the initial geometry, one
naively expects v2f4g ∼ 0, even if there is collective flow in
the system.
In this Letter, we argue that the values observed

for v2f4g in p-Pb collisions are naturally explained by

non-Gaussian fluctuations, which are expected for small
systems. Our explanation differs from that recently put
forward by Bzdak et al. [20] that it is due to symmetry
breaking [see Eq. (3) and discussion below]. As do Bzdak
et al., we assume that anisotropic flow vn scales like the
corresponding initial-state anisotropy εn on an event-by-
event basis. This is known to be a very good approximation
in ideal [21] and viscous [22] hydrodynamics. Thus,
flow fluctuations directly reflect εn fluctuations. Now, εn
is bounded by unity by definition. On the other hand,
Gaussian fluctuations are not bounded, which is the reason
why they fail to model small systems. We propose a simple
alternative to the Gaussian parametrization that naturally
satisfies the constraint εn < 1. We show that it provides an
excellent fit to all Monte Carlo calculations.
Distribution of the initial anisotropy.—In each event, the

anisotropy in harmonic n is defined (for n ¼ 2, 3) by [23]

εn;x ≡ −
R
rn cosðnϕÞρðr;ϕÞrdrdϕR

rnρðr;ϕÞrdrdϕ ;

εn;y ≡ −
R
rn sinðnϕÞρðr;ϕÞrdrdϕR

rnρðr;ϕÞrdrdϕ ; (1)

where ρðr;φÞ is the initial transverse density profile near
midrapidity in a centered polar coordinate system.
Figure 1 displays the histogram of the distribution of ε2

in a p-Pb collision at 5.02 TeV obtained in a Monte Carlo
Glauber calculation [24]. We use the PHOBOS implementa-
tion [25] with a Gaussian wounding profile [26,27]. We
assume that the initial density ρðr;φÞ is a sum of Gaussians
of width σ0 ¼ 0.4 fm, centered around each participant
nucleon with a normalization that fluctuates [28]. These
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fluctuations, which increase anisotropies [29], are modeled
as in Ref. [20]. We have selected events with number of
participants 14 ≤ N ≤ 16, corresponding to typical values
in a central p-Pb collision.
We now compare different parametrizations of this

distribution, which we use to fit our numerical results.
The first is an isotropic two-dimensional Gaussian (we drop
the subscript n for simplicity)

PðεÞ ¼ 2ε

σ2
exp

�
−
ε2

σ2

�
; (2)

where ε≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2x þ ε2y

q
and the distribution is normalized:R∞

0 PðεÞdε ¼ 1. This form is motivated by the central limit
theorem, assuming that the eccentricity solely originates
from event-by-event fluctuations and neglecting fluctua-
tions in the denominator. Note that this distribution does
not strictly satisfy the constraint ε < 1, which follows from
the definition (1). When fitting our Monte Carlo results, we
have therefore multiplied Eq. (2) by a constant to ensure
normalization between 0 and 1. The rms ε has been fitted
to that of the Monte Carlo simulation. Figure 1 shows
that Eq. (2) gives a reasonable approximation to our
Monte Carlo results, but not a good fit.
Bzdak et al. [20] have proposed to replace Eq. (2) by a

“Bessel-Gaussian” (BG)

PðεÞ ¼ 2ε

σ2
I0

�
2εε̄

σ2

�
exp

�
−
ε2 þ ε̄2

σ2

�
. (3)

This parametrization introduces an additional free param-
eter ε̄, corresponding to the mean eccentricity in the
reaction plane in nucleus-nucleus collisions [19]. It reduces
to Eq. (2) if ε̄ ¼ 0. A nonzero value of ε̄ is, however,
difficult to justify for a symmetric system in which

anisotropies are solely created by fluctuations. In Fig. 1,
ε̄ and σ have been chosen so that the first even moments
hε2i and hε4i match exactly the Monte Carlo results, as
suggested in Ref. [20]. The quality of the fit is not much
improved compared to the Gaussian distribution, even
though there is an additional free parameter. Note that
the Bessel-Gaussian, like the Gaussian, does not take into
account the constraint ε < 1.
We now introduce the one-parameter power-law

distribution

PðεÞ ¼ 2αεð1 − ε2Þα−1; (4)

where α > 0. Equation (4) reduces to Eq. (2) for α ≫ 1,
with σ2 ≡ 1=α. The main advantage of Eq. (4) over
previous parametrizations is that the support of PðεÞ is
the unit disc: it satisfies for all α > 0 the normalizationR
1
0 PðεÞdε ¼ 1. In the limit α → 0þ, PðεÞ≃ δðε − 1Þ.
Equation (4) is the exact [30] distribution of ε2 for N

identical pointlike sources with a 2-dimensional isotropic
Gaussian distribution, with α ¼ ðN − 1Þ=2, if one ignores
the recentering correction [see Eq. (3.10) of Ref. [30];
what is derived there is the distribution of anisotropy in
momentum space, but the algebra is identical for the
distribution of eccentricity]. In a more realistic situation,
Eq. (4) is no longer exact. We adjust α to match the
rms ε from the Monte Carlo calculation. Figure 1 shows
that Eq. (4) (with α≃ 5.64) agrees much better with
Monte Carlo results than Gaussian and Bessel-Gaussian
distributions.
Cumulants.—Cumulants of the distribution of ε are

derived from a generating function, which is the logarithm
of the two-dimensional Fourier transform of the distribu-
tion of ðεx; εyÞ

Gðkx; kyÞ≡ lnhexpðikxεx þ ikyεyÞi; (5)

where angular brackets denote an expectation value over
the ensemble of events. If the system has azimuthal
symmetry, by integrating over the relative azimuthal angle
of k and ε, one obtains

GðkÞ ¼ lnhJ0ðkεÞi; (6)

where k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and ε≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2x þ ε2y

q
. The cumulant to a

given order n, εfng, is obtained by expanding Eq. (6) to
order kn and identifying with the expansion of ln J0ðkεfngÞ
to the same order. This uniquely defines εfng for all even n.
One, thus, obtains [3] εf2g2 ¼ hε2i, εf4g4 ¼ 2hε2i2−
hε4i. Expressions of εf6g and εf8g are given in Ref. [20].
Expressions of the first four cumulants are listed in

Table I. For the power-law distribution (4), these results are
obtained by expanding the generating function (6) whose
expression is
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FIG. 1 (color online). Histogram of the distribution of ε2
obtained in a Monte Carlo Glauber simulation of a p-Pb collision
at LHC and fits using Eqs. (2)–(4).
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GðkÞ ¼ ln

�Z
1

0

J0ðkεÞPðεÞdε
�
¼ ln

�
2αα!

kα
JαðkÞ

�
. (7)

General results have been obtained previously in the case of
N pointlike sources and in the large N limit for ε2f2g [31]
and ε2f4g [32]. Our results derived from Eq. (4) are exact
for a Gaussian distribution of sources and, therefore, agree
with these general results for N ≫ 1. Similar results have
also been derived for ε3f2g and ε3f4g [33] but not for
cumulants of order 6 or higher.
Figure 2 displays the cumulants εf2g to εf8g as a function

of N, as predicted by Eq. (4) for pointlike sources (here we
assume that the recentering correction effectively reduces by
one unit the number of independent sources; we thus replace
N byN − 1 in the exact result of Ref. [30]). These results are
similar to those obtained in full Monte Carlo Glauber
calculations [20]. In the limit N ≫ 1, the power-law distri-
bution yields εfkg ∝ Nð1−kÞ=k. It, thus, predicts a strong
ordering εf8g ≪ εf6g ≪ εf4g ≪ εf2g ≪ 1, unlike the
Bessel-Gaussian that predicts εf4g ¼ εf6g ¼ εf8g. For
fixed N, however, the cumulant expansion quickly con-
verges, as illustrated inFig.2. Inpractice, for typicalvaluesof
N in p-Pb collisions, one observes εf4g≃ εf6g≃ εf8g, in
agreement with numerical findings of Bzdak et al. [20]. This
rapid convergence can be traced back to the fact that the
generatingfunctionGðkÞ inEq.(7)hasasingularityat thefirst
zero of JαðkÞ, denoted by jα1. This causes the cumulant
expansion to quickly converge to the value [34]

εf∞g ¼ j01
jα1

. (8)

This asymptotic limit is also plotted in Fig. 2. It is hardly
distinguishable from εf6g and εf8g for these values of N.
Testing universality.—The power-law distribution (4)

predicts the following parameter-free relation between
the first two cumulants:

εf4g ¼ εf2g3=2
�

2

1þ εf2g2
�

1=4
. (9)

This relation can be used to test the universality of the
distribution (4). For p-Pb collisions at 5.02 TeV, we run two
different types of Monte Carlo Glauber calculations: a full
Monte Carlo calculation identical to that of Fig. 1 and a
second one where fluctuations and smearing are switched
off (identical pointlike sources). We calculate ε2 and ε3 for
each event. Events are then binned according to the number
of participants N, mimicking a centrality selection. For p-p
collisions at 7 TeV, we use published results [35] obtained
with the event generator DIPSY [36], which are binned
according to multiplicity. Results are shown in Fig. 3 (left).

TABLE I. Values of the first eccentricity cumulants for the Gaussian (2), Bessel-Gaussian (3), and power-law (4)
distributions.

Gaussian Bessel-Gaussian Power law

εf2g σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ε̄2

p
1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
εf4g 0 ε̄ ½2=ð1þ αÞ2ð2þ αÞ�1=4
εf6g 0 ε̄ ½6=ð1þ αÞ3ð2þ αÞð3þ αÞ�1=6
εf8g 0 ε̄ ½48ð1þ ð5α=11ÞÞ=ð1þ αÞ4ð2þ αÞ2ð3þ αÞð4þ αÞ�1=8
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FIG. 2 (color online). Cumulants of the eccentricity distribution
as a function of the number of participants N for the power-law
distribution of Eq. (4), where we have set α ¼ ðN − 2Þ=2.
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FIG. 3 (color online). εf4g versus εf2g. The dashed line in both
panels is Eq. (9). Left: p-Pb collisions. “Full” refers to Gaussian
sources associated with each participant and fluctuations in the
weights of each source. “Pointlike” refers to pointlike identical
sources. DIPSY results for p-p collisions are replotted from
Ref. [35]. Right: Pb-Pb collisions. The dotted line is
εf4g ¼ εf2g, corresponding to a nonzero mean eccentricity
and negligible fluctuations.
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Each symbol of a given type corresponds to a different bin.
All Monte Carlo results are in very good agreement with
those of Eq. (9). A closer look at the results shows that the
full Monte Carlo Glauber calculations are above the line
by ∼0.015 (for both ε2 and ε3), the pointlike results for ε3
by ∼0.005, and the pointlike results for ε2 (where our result
is exact, up to the recentering correction) by ∼0.002.
DIPSY results are above the line by ∼0.01.
For Pb-Pb collisions at 2.76 TeV (Fig. 3 right), we use

the results obtained in Ref. [37] using the Monte Carlo
Glauber [25] and Monte Carlo KLN [38] models. These
results are in 5% centrality bins. For ε3, both models are in
very good agreement with Eq. (9) (within 0.01 or so). Note
that Pb-Pb collisions probe this relation closer to the origin,
in the large N limit where more general results are available
[33]. These general results predict εf4g ∝ εf2g3=2 for
N → ∞, but with a proportionality constant that depends
on the density profile. Our results show that it is in practice
very close to the value predicted by Eq. (9) , namely, 21=4.
Monte Carlo results for ε2 in Pb-Pb differ from Eq. (9).

This is expected, since ε2 in midcentral Pb-Pb collisions
is mostly driven by the almond shape of the overlap
area between colliding nuclei [30], not by fluctuations.
In the limiting case where fluctuations are negligible,
ε2f4g ¼ ε2f2g. Our results show that fluctuations domi-
nate only for the most central and most peripheral bins.
We conclude that the power-law distribution of Eq. (4)

is a very good approximation to the distribution of
fluctuation-driven eccentricities, irrespective of the details
of the model. This could be checked explicitly with other
initial-state models [29,39].
Applications.—We now discuss applications of our

result. The distribution of εn is completely determined
by the parameter α in Eq. (4). This parameter can be
obtained directly from experimental data. Assuming that
anisotropic flow is proportional to eccentricity in the
corresponding harmonic vn ∝ εn, which is proven to be
a very good approximation for n ¼ 2, 3 [22], one obtains

vf4g
vf2g ¼ εf4g

εf2g ¼
�

2

2þ α

�
1=4

. (10)

The first equality has already been checked against
Monte Carlo models and experimental data [40,41]. The
second equality directly relates the parameter α in Eq. (4) to
the measured ratio vf4g=vf2g.
This in turn gives a prediction for ratios of higher-order

flow cumulants, which scale like the corresponding ratios
of eccentricity cumulants. These predictions are displayed
in Fig. 4. One can also directly obtain the rms eccentricity
εf2g, which is a property of the initial state.
The ratio v3f4g=v3f2g in Pb-Pb is close to 0.5 in

midcentral collisions [6,41].We thuspredictv3f6g=v3f4g≃
0.84 and v3f8g=v3f6g≃ 0.94 in the same centrality.
We also obtain ε3f2g≃ 0.17, which is a typical prediction

from Monte Carlo models in the 10%–20% or 20%–30%
centrality range [42].
Similarly, the ratio v2f4g=v2f2g ∼ 0.7measured in p-Pb

collisions [14,15] implies v2f6g=v2f4g≃ 0.93 and
v2f8g=v2f6g≃ 0.98, that is, almost degenerate higher-
order cumulants. We obtain ε2f2g≃ 0.37, in agreement
with Monte Carlo Glauber models [20].
Conclusions.—We have proposed a new parametrization

of the distribution of the initial anisotropy εn in proton-
proton, proton nucleus and nucleus-nucleus, which unlike
previous parametrizations takes into account the condition
εn < 1. This new parametrization is found in good agree-
ment with results of Monte Carlo simulations when εn is
created by fluctuations of the initial geometry. Our results
explain the observation, in these Monte Carlo models, that
cumulants of the distribution of εn quickly converge as
the order increases. This is because the Fourier transform of
the distribution of εn has a zero at a finite value of the
conjugate variable k. This, in turn, is a consequence of the
fact that the probability distribution of εn has compact
support (that is, εn < 1).
The consequence of this universality is that while the

rms εn is strongly model dependent [42], the probability
distribution of εn is fully determined once the rms value
is known—in particular, the magnitudes of higher-order
cumulants such as εnf4g. Assuming that anisotropic flow
vn is proportional to εn in every event, we have predicted
the values of v3f6g and v3f8g in Pb-Pb collisions and the
values of v2f6g and v2f8g in p-Pb collisions.
If future experimental data confirm our prediction, these

results will strongly support the picture that the long-range
correlations observed in proton-nucleus and nucleus-
nucleus collisions are due to anisotropic flow, which is
itself proportional to the anisotropy in the initial state. This
picture, furthermore, will be confirmed irrespective of the
details of the initial-state model.
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