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The study of the production of two forward jets with a large interval of rapidity at hadron colliders
was proposed by Mueller and Navelet as a possible test of the high energy dynamics of QCD. We analyze
this process within a complete next-to-leading logarithm framework, supplemented by the use of the
Brodsky-Lepage-Mackenzie procedure extended to the perturbative Regge dynamics, to find the optimal
renormalization scale. This leads to a very good description of the recent CMS data at LHC for the
azimuthal correlations of the jets.
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Introduction.—Many processes have been proposed as a
way to probe the high energy dynamics of QCD, described
by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach
[1]. Among the most promising ones is the production of
two forward jets separated by a large interval of rapidity
at hadron colliders, proposed by Mueller and Navelet [2].
The purpose of the present Letter is to show that the most
recent LHC data extracted by the CMS collaboration for the
azimuthal correlations of these jets [3] are well described
within this framework.
The description of this process involves two main

building blocks: the jet vertex, which describes the tran-
sition from an incoming parton to a jet, and the Green’s
function, which describes the Pomeron exchange between
the vertices. The first results of a complete next-to-leading
logarithmic (NLL) calculation, including the NLL correc-
tions both to the Green’s function [4] and to the jet vertex
[5], showed that the NLL corrections to the jet vertex have a
very large effect, leading to a lower cross section and a
much larger azimuthal correlation [6]. It was also observed
that the results were very dependent on the choice of the
scales, especially the renormalization scale μR and the
factorization scale μF. This has been confirmed in a more
recent study [7], where we used more realistic kinematic
cuts. To reduce this dependency, we apply the physically
motivated Brodsky-Lepage-Mackenzie (BLM) procedure
[8] to fix the renormalization scale, as it was adapted to the
resummed perturbation theory à la BFKL in Refs. [9].
Mueller-Navelet jets.—The observables which are of

interest are the differential cross section C0

C0 ¼
dσ

djkJ;1jdjkJ;2jdyJ;1dyJ;2
; (1)

where kJ;1, kJ;2 are the transverse momenta of the jets and
yJ;1, yJ;2 are their rapidities, and the azimuthal correlations
[10] of the jets

Cn
C0

¼ hcos ½nðϕJ;1 − ϕJ;2 − πÞ�i≡ hcosðnφÞi; (2)

where ϕJ;1, ϕJ;2 are the azimuthal angles of the two jets.
The relative azimuthal angle φ is defined such that φ ¼ 0
corresponds to the back-to-back configuration.
The coefficients Cn can be expressed as

Cn¼ð4−3δn;0Þ
Z

dðP:SÞfðx1Þfðx2ÞEn;νðk1ÞE�
n;νðk2Þ

×Vðk1;x1ÞVðk2;x2ÞcosðnϕJ2ÞcosðnϕJ1Þeωðn;νÞY; (3)

where Y ¼ yJ;1 − yJ;2 and we have defined for brevity the
integration over the phase space and over the parameter ν of
conformal weight as

Z
dðP:SÞ ¼

Z
dνdϕJ1d2k1dx1dϕJ2d2k2dx2; (4)

where ν is integrated from −∞ to þ∞, x1ð2Þ is integrated
from 0 to 1, and ϕJ1ð2Þ is integrated from 0 to 2π; f are
the usual parton distribution functions (PDFs) and En;ν
are the leading logarithmic (LL) BFKL eigenfunctions
En;νðkiÞ ¼ ð1=π ffiffiffi

2
p Þðk2

i Þiν−ð1=2Þeinϕi :TheLLjetvertexreads

Vð0Þ
a ðk; xÞ ¼ αsffiffiffi

2
p CA=F

k2
δ

�
1 − xJ

x

�
jkJjδð2Þðk − kJÞ; (5)

where CA ¼ Nc ¼ 3 and CF ¼ ðN2
c − 1Þ=ð2NcÞ ¼ 4=3 are

to be used in the case of an incoming gluon and quark,
respectively. The jet vertex V at NLL accuracy can bewritten

as Vaðk; xÞ ¼ Vð0Þ
a ðk; xÞ þ αsV

ð1Þ
a ðk; xÞ. The expression of

Vð1Þ
a , which has been recently reobtained in Ref. [11], can be

found in Ref. [6]. Its expression in the limit of small cone
jets has been computed in Ref. [12] and used in Refs. [13].
It was also rederived within the high energy effective action
approach in Refs. [14].
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At NLL, the eigenvalue of the BFKL kernel is [15–17]

ωðn; νÞ ¼ ᾱsχ0

�
jnj; 1

2
þ iν

�
þ ᾱ2s ~χ1

�
jnj; 1

2
þ iν

�
; (6)

where ᾱs ¼ Ncαs=π,

χ0ðn; γÞ ¼ 2ψð1Þ − ψ

�
γ þ n

2

�
− ψ

�
1 − γ þ n

2

�
; (7)

with ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ,

~χ1ðn; γÞ ¼ χ1ðn; γÞ − πb0
Nc

χ0ðn; γÞ ln
jkJ;1j · jkJ;2j

μ2R
; (8)

where the expression for χ1, which was obtained in
Refs. [15], can be found in Eq. (2.17) of Ref. [7].
BLM scale setting.—The BLM procedure is a way of

absorbing the nonconformal terms of the perturbative series
in a redefinition of the coupling constant, to improve the
convergence of the perturbative series [18]. In practice,
one should extract the β0-dependent part of an observable
and choose the renormalization scale to make it vanish. The
BLM procedure was first applied to BFKL dynamics in

Refs. [9] for the γ�γ� total cross section, considering the
NLL corrections to the Green’s function but using the LL γ�
impact factor, with the important outcome of stabilizing the
NLL BFKL intercept. This method was used in a similar
spirit in Refs. [19]. We follow the same line of thought,
taking into account the NLL corrections to the jet vertex.
In the expression of the coefficients Cn, the renormal-

ization scale μR enters both ω (through αs and the second
term of ~χ1 which carries an explicit dependence on μR)
and V. To separate the parts which depend on μR from
those which do not, we rewrite Eq. (3) as

Cn ¼ α2sð4 − 3δn;0Þ
Z

dðP:SÞDðk1; x1ÞDðk2; x2Þ

× Aðx1;k1;ϕJ1ÞA�ðx2;k2;ϕJ2Þeωðn;νÞY; (9)

where Aðxi;ki;ϕJiÞ ¼ fðxiÞEn;νðkiÞ cosðnϕJiÞ. As Vð0Þ
and Vð1Þ both contain a global αs factor, we have defined
DðiÞðk; xÞ ¼ VðiÞðk; xÞ=αs to make Dð0Þ and Dð1Þ αs
independent. We, now, focus on the μR-dependent part
Dðk1; x1ÞDðk2; x2Þeωðn;νÞY ≡ Bn of Eq. (9). It can be
expanded as the following series at NLL accuracy, for
an arbitrary renormalization scale μR;init

Bn ¼ ½Dð0Þðk1; x1ÞDð0Þðk2; x2Þ þ αsðμR;initÞðDð1Þðk1; x1ÞDð0Þðk2; x2Þ þDð0Þðk1; x1ÞDð1Þðk2; x2ÞÞ�

×
X∞
m¼0

ðᾱsðμR;initÞχ0ðn; γÞYÞm
m!

�
1þmᾱsðμR;initÞ

~χ1ðn; γ
χ0ðn; γ

�
: (10)

Up to now, all the quantities we introduced were defined
in the MS scheme. However, the BLM procedure is
more conveniently applied in a physical renormalization
scheme, so we first perform the transition from the
modified minimal subtraction (MS) scheme to the
momentum subtraction (MOM) scheme, which is equiv-
alent to writing [20]

αMS ¼ αMOM

�
1þ αMOM

TMOM

π

�
; (11)

where TMOM ¼ Tβ
MOM þ Tconf

MOM,

Tconf
MOM ¼ Nc

8

�
17

2
I þ 3

2
ðI − 1Þξþ

�
1 − 1

3
I

�
ξ2 − 1

6
ξ3
�
;

Tβ
MOM ¼ −

β0
2

�
1þ 2

3
I

�
; (12)

where β0 ¼ ð11Nc − 2NfÞ=3, Nf is the number of flavors,
I ¼ −2 R 1

0 dx lnðxÞ=½x2 − xþ 1�≃ 2.3439, and ξ is a

gauge parameter. The variation of Bn when going from
the MS to the MOM scheme is

δBn ¼ Dð0Þðk1; x1ÞDð0Þðk2; x2ÞᾱsðμR;initÞ
TMOM

Nc

×
X∞
m¼1

½ᾱsðμR;initÞχ0ðn; γÞY�m
ðm − 1Þ! ; (13)

so that Bn;MOM ¼ Bn þ δBn. To express Bn;MOM as a
function of an arbitrary renormalization scale μR we write
αðμR;initÞ as

αsðμR;initÞ ¼ αsðμRÞ
�
1 − αsðμRÞ

β0
4π

ln
μ2R;init
μ2R

�
: (14)

Now, we shall insert Eq. (14) in the expression of
Bn;MOM and extract the β0-dependent part. One can see

from the expression of Vð1Þ
a given in [6] that the

term which depends on β0 is proportional to the leading
order part of the vertex, i.e., Dð1Þβðki; xiÞ ¼
−ðβ0=2πÞ ln ðjkij=μR;initÞDð0Þðki; xiÞ. Thus, the part of
Bn;MOM proportional to β0 reads
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Bβ
n;MOM ¼ Dð0Þðk1; x1ÞDð0Þðk2; x2Þ

X∞
m¼0

αsðμRÞmþ1χ0ðn; γÞm
�
YNc

π

�
m 1

m!

�
− β0
2π

ln
jk1j · jk2j
μ2R;init

þm
Nc

π

�
~χβ1ðn; γÞ
χ0ðn; γÞ

þ Tβ
MOM

Nc

�
−m

β0
4π

ln
μ2R;init
μ2R

�
; (15)

where ~χβ1 and Tβ
MOM are the β0-dependent parts of ~χ1

and TMOM, respectively. The optimal scale μR;BLM is the
value of μR that makes the expression inside the brackets
vanish. Taking into account the fact that our initial scale
is μR;init ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkJ;1j · jkJ;2j
p

and that Dð0Þðki; xiÞ contains a
factor δð2Þðki − kJ;iÞ which will enforce jkij ¼ jkJ;ij after
integrating over d2ki, we need to solve the equation

Nc

π

�
χβ1ðn; γÞ
χ0ðn; γÞ

þ Tβ
MOM

Nc

�
− β0
4π

ln
jkJ;1j · jkJ;2j

μ2R;BLM
¼ 0; (16)

whose solution is

μ2R;BLM¼jkJ;1j·jkJ;2jexp
�
1

2
χ0ðn;γÞ−5

3
þ2

�
1þ2

3
I
��

: (17)

Theoretical uncertainties.—Despite the fact that we have
used the BLM procedure to fix the renormalization scale,
several theoretical uncertainties remain.
First, the scale of the prefactor α2s in Eq. (9) is not fixed

in our implementation of the scale fixing procedure. To
evaluate the corresponding uncertainty, we consider two
cases, namely, either we take for this scale μR;BLM or μR;init.
Second, our calculation involves the factorization scale μF

which enters both the PDFs and the hard part. In principle,
one should vary independently μR and μF. But, since the
choice μR ¼ μF is made by all PDFs fitting collaborations
we are aware of, one could argue that, for consistency, we
should do the same. To estimate the reliability of our results,
we did two evaluations: one with μF ¼ μR ¼ μR;BLM and
one with the “natural” choice μF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkJ;1j · jkJ;2j

p
. In both

cases, we chose the single scale entering the PDFs as μF.

Third, several methods [21,22] have been proposed to
improve the NLL BFKL Green’s function by imposing its
compatibility with DGLAP [23] in the collinear limit. As in
Ref. [7], we implemented scheme 3 of Ref. [21] and found
that the effect of such collinear improvement was important
for the cross section but much smaller than the two previous
uncertainties for all the angular quantities we study here.
Results.—Recently, the CMS collaboration measured the

azimuthal decorrelation of Mueller-Navelet jets at the LHC
at a center of mass energy of 7 TeV [3]. Here, we compare
our results using the BLM procedure to this measurement.
The quantities we discussed in the previous sections were
differential with respect to the transverse momenta kJ;1,
kJ;2 and the rapidities yJ;1, yJ;2 of the jets. Here, we try
to stay as close as possible to the configuration used in
Ref. [3]: yJ;1 and yJ;2 run between 0 and 4.7 and we
integrate kJ;1 and kJ;2 from 35 to 60 GeV. The CMS
collaboration did not use an upper cut on the transverse
momenta of the jets, but we have to do so for numerical
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FIG. 1. Variation of hcos φi as a function of Y at NLL accuracy
compared with CMS data.
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FIG. 2. Variation of hcos 2φi as a function of Y at NLL
accuracy compared with CMS data.
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FIG. 3. Variation of hcos 3φi as a function of Y at NLL
accuracy compared with CMS data.
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reasons. We have checked that our results do not depend
strongly on the value of this cut, as the cross section is
quickly decreasing with increasing transverse momenta.
We use the anti-kt jet algorithm [24] with a size parameter
R ¼ 0.5 and the MSTW 2008 PDFs [25]. The results
displayed in every figure include the NLL BFKL calcu-
lation with the natural choice μR ¼ μF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkJ;1j · jkJ;2j

p
(dashed line), the NLL BFKL calculation with the BLM
scale choice (gray uncertainty band) and the CMS data
(dots with error bars). In our uncertainty band, we include
the three effects discussed in the previous section.
Before comparing our results with data, we would like to

note that our calculation is performed at the partonic level
and does not include hadronization effects. However, the
magnitude of these effects was estimated in [3] to be smaller
than the experimental uncertainties, which justifies this
comparison. We also did not take into account multiparton
interactions, in which several partons from the same hadron
take part in the interaction, as there is, for now, no theoretical
framework to deal with such contributions at small x.
We first show results for the angular correlations

hcos φi, hcos 2φi, and hcos 3φi as a function of the
relative rapidity Y ¼ yJ;1 − yJ;2 on Figs. 1, 2, and 3,
respectively. The conclusion for these three observables
is similar: when one uses the natural scale, the NLL BFKL
calculation is always above the data. But these data are
much better described when setting the scale according to
the BLM procedure.

On the other hand, the ratios hcos 2φi=hcos φi and
hcos 3φi=hcos 2φi are almost not affected by the BLM
procedure (see Figs. 4 and 5). This is because these
observables are very stable with respect to the scales, as
was noticed before in Refs. [6,7,17].
Another interesting observable, measured in Ref. [3], is

the azimuthal distribution of the jets ð1=σÞðdσ=dφÞ, which
can be expressed as

1

σ

dσ
dφ

¼ 1

2π

�
1þ 2

X∞
n¼1

cos ðnφÞhcos ðnφÞi
	
: (18)

In Fig. 6, we show the comparison of our calculation with
the data for the azimuthal distribution integrated over the
range 6.0 < Y < 9.4. We observe that using the natural
scale μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkJ;1j · jkJ;2j

p
, the BFKL calculation is slightly

above the data for φ≲ 1 and then becomes much lower
than the data, even reaching negative values for φ ∼ π. This
issue does not arise when using BLM, and the agreement
with data then becomes very good over the full φ range.
Comparison with the fixed order.—Since the CMS

collaboration considered configurations with identical
lower cuts on the jets transverse momenta, which would
lead to unreliable results in a fixed-order treatment [26], a
direct comparison of our analysis with this approach cannot
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FIG. 6. Azimuthal distribution at NLL accuracy compared with
CMS data.
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FIG. 4. Variation of hcos 2φi=hcos φi as a function of Y at
NLL accuracy compared with CMS data.
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FIG. 5. Variation of hcos 3φi=hcos 2φi as a function of Y at
NLL accuracy compared with CMS data.
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FIG. 7. Variation of hcos 2φi=hcos φi as a function of Y at
NLL accuracy compared with a fixed order treatment.
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be performed. In Fig. 7, we show the comparison of our
BFKL calculation with the results obtained with the NLO
fixed-order code DIJET [27] for the ratio hcos 2φi=hcos φi
in the same kinematics as for previous results, but with the
requirement that at least one jet has a transverse momentum
larger than 50 GeV. As in [7], we see that there is a clear
difference between BFKL and the fixed order, so we expect
that an experimental analysis in an asymmetric configura-
tion would discriminate between these approaches.
Energy-momentum conservation.—A general weakness

of BFKL calculations is the absence of strict energy-
momentum conservation. This has been studied for
Mueller-Navelet jets in the past [28,29], using the leading
order jet vertex. These studies showed that this is mainly an
issue when kJ;1 and kJ;2 are different. This effect should
not be dramatic here, as we use the same lower cut on these
variables when comparing with CMS data, and the cross
section decreases quickly with increasing kJ;1, kJ;2. Also,
we expect that the inclusion of the NLL corrections to the
jet vertex improves the situation.
Conclusions.—In this Letter, we have studied the azi-

muthal correlations of Mueller-Navelet jets and compared
the predictions of a full NLL BFKL calculation with data
taken at the LHC. We have shown that using the BLM
procedure to fix the renormalization scale leads to a very
good agreement with the data, much better than when using
the natural value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkJ;1j · jkJ;2j
p

.
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