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In many quantum measurements, information is acquired incrementally by the successive interaction of
meters with the measured system. Adaptive measurements minimize the use of resources (meters) by
adjusting the measurement settings according to available information. We demonstrate an adaptive
measurement for nondestructive photon counting in a cavity, based on Ramsey interferometry for Rydberg
atoms interacting with the field. Tuning the interferometer in real time, we speed up the measurement by up
to 45%. Such adaptive methods are promising for quantum metrology, state preparation, and feedback.
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Quantum measurement, which takes place at the inter-
face between the quantum world and the macroscopic
reality, plays an essential role in quantum metrology,
quantum information, and quantum communication.
Among all measurement strategies, the quantum nonde-
molition (QND) ones are of particular interest [1]. They
implement the ideal repeatable projective measurement
described by the basic postulates, allowing us to follow
in real time the system’s evolution as a series of quantum
jumps between the measurement eigenstates. They open the
door to high-sensitivity detection of minute perturbations.
QND measurements have been realized in a few contexts

[2,3], including the measurement of the intensity of a
macroscopic laser beam, the collective spin of an atomic
ensemble [4], and the counting of photons stored in a cavity
[5]. These measurements are performed indirectly by
coupling the system to quantum meters, whose states are
finally measured. For laser beams and spin ensembles, the
meters are photons, finally destructively counted. For
photons in cavities, the meters are atoms, interacting
dispersively with the field.
In principle, one meter system would be sufficient,

provided its Hilbert space is at least as large as that of
the measured system. It is generally not the case. In the
QND photon counting, meters are two-level atoms which
interact successively with the field and whose detection
provides binary information. The measurement gathers
information from many meters, resulting in a progressive
collapse of the field state, which should occur on a time
scale smaller than that of the system’s decoherence. It is
thus important to reduce the amount of resources (meters)
required and to approach the minimum determined by
information theory.
Adaptive measurement strategies aim to achieve this

resource reduction by adapting, for each meter, the param-
eters of its interaction with the system and/or the settings of
its detection, according to all information available at the
time [6]. Measurements realizing part or all of these

objectives have already been reported [7–9]. Most relied
on absorptive detection of light [7,10] for an optimized
estimation of the optical phase of propagating light fields.
These experiments are particularly relevant for practical
applications to quantum-enabled metrology and continu-
ous-variable quantum communication. However, none so
far has tackled the adaptive QND detection of photons. It is
of great importance for microwave cavity quantum electro-
dynamics (QED) [5], but also in the thriving field of circuit
QED [11] and for optical cavity QED, in which QND
detection of photons has been recently reported [12], with
considerable possible impact for quantum communication.
We report here the adaptive QND counting of the

number n of photons stored in a microwave superconduct-
ing cavity. The meters are circular Rydberg atoms, non-
resonant with the cavity field. Their quantized light shift is
measured by an atomic Ramsey interferometer (RI). We
leave constant the system-meter interaction and adapt in
real time the RI phase (i.e., the measured meter observable)
to maximize information provided by each atomic detec-
tion. We demonstrate significant speedup in comparison
with the previous “passive” photon counting method.
The experimental scheme is presented in Fig. 1 and

described in detail in Refs. [13,14]. The high-Q microwave
cavity C, resonant at ωc=2π ¼ 51.1 GHz, is made of two
superconducting Niobium mirrors separated by 2.8 cm and
cooled down to 0.8 K (mean number of black-body photons
0.05) [15]. The photon lifetime is 65 ms. A microwave
source S is used to inject a few-photon coherent field jαi
into C by diffracting radiation off the mirrors’ edges. Its
photon-number distribution PcohðnÞ is Poissonian with
average photon number ncoh ¼ jαj2.
Circular Rydberg atoms, excited in B from a Rubidium

thermal beam, are used as meters. The atomic transition
frequency ωa=2π between levels jgi et jei (principal
quantum numbers 50 and 51, respectively) is detuned by
δ=2π ¼ 238 kHz from ωc=2π. Being much larger than the
the vacuum Rabi frequency Ω0=2π ¼ 47 kHz, this
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detuning precludes photon absorption or emission and
enforces the QND nature of the measurement. Samples
of atoms in state jgi, propagating at a velocity
v ¼ 250 m=s, are prepared in B every Ta ¼ 83 μs. The
atom number in a sample obeys a Poisson statistics. The
average number of atoms detected by state-selective field
ionization in the detector D is na ¼ 0.35.
The nonresonant atomic transition is light-shifted in

setup C. This shift is measured by the RI, composed of
the auxiliary cavities R1 and R2 fed by the source S0 and
sandwiching C. A resonant π=2 pulse in R1 prepares the
coherent superposition ðjgi − jeiÞ= ffiffiffi

2
p

. The dispersive
atom-cavity interaction results in a phase shift φðnÞ ≈
nφ0 of this atomic superposition. The phase shift per
photon is φ0 ¼ Ω2

0teff=2δ, where teff is the effective
interaction time determined by v. In order to distinguish
values of n from 0 to 7, we set φ0 ≈ π=4. A precise
calibration provides φðnÞ ¼ 0.255πn − 0.0015πn2, see
[16] for the procedure and Fig. 2(a). The RI is completed
by a π=2 pulse in R2 after the atom has left C.
The conditional probability to detect finally an atom in

state s ∈ fg; eg is

Pðsjϕ; nÞ ¼ f1þ jAþ jB sin½φðnÞ − ϕ�g=2; (1)

where j ¼ 1 (−1) for s ¼ gðeÞ. The measured offset and
contrast are A ¼ 0.008 and B ¼ 0.685. The RI phase ϕ is
controlled via a transient Stark shift of ωa produced by a
voltage pulse V applied across R2 (0.7 V for a π
phase shift).
For a passive QND counting, with n ∈ f0…7g, four

settings of the RI phase, ϕi (0 ≤ i ≤ 3), differing by about
π=4 [dashed lines in Fig. 2(a)] are alternatively used in a
preset way for successive atomic samples [5]. The detection
probabilities Pðgjϕi; nÞ are plotted in Fig. 2(b). The setting

ϕi provides Pðgjϕi; nÞ ≈ 0.5 for n ¼ i and n ¼ iþ 4 and
hence a maximum sensitivity of the signal to a change in n
around these two numbers.
The photon-number distribution PkðnÞ after the detec-

tion of the kth atom is deduced from Pk−1ðnÞ by Bayes’
law. If the atom is found in state sk using phase ϕpk

with
pk ¼ 0…3, the distribution PkðnÞ is

PkðnÞ ¼ Pk−1ðnÞPðskjϕpk
; nÞ=Pðskjϕpk

Þ; (2)

with Pðskjϕpk
Þ ¼ P

nPk−1ðnÞPðskjϕpk
; nÞ. The multipli-

cation of Pk−1ðnÞ by Pðskjϕpk
; nÞ enhances the probabil-

ities of photon numbers most compatible with the detected
state sk and reduces those of photon numbers least
compatible. Many successive detections decimate n until
a single random ncov is left [5,17]. This process requires on
the average 70 atomic detections to converge to
PðncovÞ > 0.8. This passive method has been used for
preparing Fock states [16,18] and for field sensing in
quantum feedback loops locking n in spite of
decoherence [19,20].
Our adaptive measurement process notably increases the

information flux by actively adjusting, in real time, the RI
phase ϕ for each atomic sample. We quantify the informa-
tion in PðnÞ by the normalized Shannon entropy,

SðPðnÞÞ ¼ 1

lnð1=8Þ
X

7

n¼0

PðnÞ lnPðnÞ: (3)

The limiting entropy values 0 and 1 correspond to a pure
number state and to a uniform distribution PuniðnÞ ¼ 1=8,
respectively.
After detecting the kth atom, the real-time controller K

(Fig. 1) calculates PkðnÞ from Pk−1ðnÞ. Then, for each
possible choice of RI phase to be applied to the next sample
enteringR2, K evaluates the statistical average of S over the
two possible atomic detections. The phase leading to
the largest entropy reduction is then implemented. Due
to the spatial separation of R2 and D (86 mm), the chosen
phase is applied to the (kþ 4)th sample. Since the atom-
field interaction is QND, the three not-yet-detected samples

FIG. 1 (color online). Scheme of the experimental setup.
Circular Rydberg atoms, prepared in box B, are detected in
detector D at the exit of the Ramsey interferometer R1–R2

sandwiching the superconducting cavity C. As a function of the
detection results, the controller K updates in real time its
estimation of the actual photon-number distribution in C. It then
chooses the optimal RI phase for the next atomic sample crossing
R2 by adjusting the potential V.

FIG. 2 (color online). Experimental phase settings. (a) Cali-
brated phase shifts φðnÞ for n ¼ 0 to 7 (solid red lines) and the set
of four RI phases ϕi (dashed blue axes). (b) Conditional
probabilities Pðgjϕ; nÞ corresponding to the four ϕi’s.
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do not modify PðnÞ and thus are not considered in making
the decision.
In a first experiment, we demonstrate the gain of the

adaptive measurement of a field in a well defined photon-
number state. We use a three-section experimental
sequence starting by the injection of a 3.5-photon coherent
field. In the first section we perform a state preparation
using a passive QND photon number counting. In the
second section we run the adaptive sequence. In the last
section we perform a state verification with a second
passive counting. We postselect for analysis only those
sequences for which the photon counts in the passive
sections, nini and nfin, are the same. In this way, we
eliminate photon number jumps and operate with an
effectively relaxation-free system.
The passive sections use the procedure described in [18].

In addition to the Bayesian estimation of PkðnÞ, it takes into
account the small evolution of PðnÞ between successive
samples due to field relaxation [13,16]. The state prepa-
ration section starts with P0ðnÞ ¼ PcohðnÞ. The controller
stops it when one of the photon-number probabilities,
PkðniniÞ, reaches 0.8. The verification section starts with
P0ðnÞ, peaked at nini, modeling the state at the end of the
first section and including a calculated relaxation process
during the 25-ms-long (300 atomic samples) intermediate
adaptive measurement. The verification stops when the
probability of any nfin reaches 0.8.
For a fair estimation of the adaptive section performance,

wedonot assumeanyaprioriknowledgeon the field and start
the decimation with P0ðnÞ ¼ PuniðnÞ. For the first four
samples (no atomic detection yet), we preset the detection
phase. Then, we choose it according to the entropy optimi-
zation algorithm. We analyze the measurement performance
using all postselected data, for all nini values. We define,
for each sequence, a distribution of relative photon
numbers,P0

kðΔnÞ ¼ Pkðn ¼ ðnini þ ΔnÞmod 8ÞwithΔn ¼
ððn − nini þ 3Þmod 8Þ − 3. The relative photon number Δn
is thus equal to 0 for n ¼ nini and is limited to−3 ≤ Δn ≤ 4.
We have realized 19500 sequences and postselected

about 6000 of them. Figure 3(a) shows the relative
distribution P0

kðΔnÞ averaged over all postselected sequen-
ces. Starting from the flat distribution, P0

kð0Þmonotonically
increases to ≈0.8. The neighboring probabilities, P0

kð�1Þ,
first increase (initial squeezing of PðnÞ around nini), and
then asymptotically decrease to ≈0.1. The probabilities of
other photon numbers monotonically decrease towards 0.
In order to assess the adaptive measurement speedup, we

perform a control experiment in which the central section of
the sequence is replaced by a simple passive measurement
with preset RI phases. The photon number decimation
procedure is identical to that of the adaptive section. The
dashed line in Fig. 3(a) presents the time evolution of P0

kð0Þ
for about 6200 postselected passive measurements. The
asymptotic value is nearly the same as in the adaptive case,
but the convergence is slower.

The asymptotic value of P0
kð0Þ < 1 could be either due to

an imperfection in the adaptive procedure itself or to an
imperfect state selection by the passive sections of the
sequence. We thus assess the purity of states postselected
with nini by performing a maximum-likelihood (ML)
reconstruction of the photon-number distribution PMLðnÞ
on the ensemble of all sequences assigned to this nini value
[21]. The reconstruction is based upon the analysis of all
atomic detections in the passive central sections of these
sequences. We then compute the relative photon-number
distribution averaged over all nini, P0

MLðΔnÞ, shown in the
right bar in Fig. 3(a). It is in fair agreement with the
asymptotical values of P0

kðΔnÞ. The reduced value of P̄0
kð0Þ

is thus mostly due to the imperfect state selection.
To get a better insight into the data acquisition rate, we

plot in Fig. 3(b) the evolution of the entropy S̄ averaged
over all adaptive (solid thick black line) and passive (solid
thin red line) postselected sequences. The inset in Fig. 3(b)
presents a speedup factor defined as the ratio of the
measurement times needed to reach, on the average, the

FIG. 3 (color online). Adaptive measurement of a nondecaying
field. (a) Average evolution of the relative photon-number
distribution P0

kðΔnÞ. The right bar displays the values of the
reconstructed P0

MLðΔnÞ, averaged over all nini. (b) Average
entropy for passive (black thin line) and adaptive (red thick line)
measurements. Solid and dashed lines are experimental and
simulation results, respectively. Inset: speedup of information
acquisition when using the adaptive measurement.
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same entropy with each method. With the adaptive meas-
urement, we reach S̄ ¼ 0.2 (corresponding to a 90%
confidence in one n value) about 25% faster. The speedup
is even larger for smaller entropies. The dashed lines in
Fig. 3(b) indicate the results of Monte Carlo simulations.
The agreement with the experiment is good in the initial
phase of the decimation process, down to S̄ ≈ 0.1. The
discrepancies, mainly noticeable for low entropies, are due
to the slow drift of the RI phase during the one-hour
duration of the experiment.
We have also studied the probability distribution of the

RI phase choice. We have observed that K, after a few
detections, preferably chooses, with an ≈50% probability, a
midfringe phase setting for the most likely photon number.
The orthogonal phase, less sensitive to this photon number,
is seldom chosen.
In a second experiment we use the adaptive measurement

concept to speed up the preparation of a Fock state out of an
initial coherent field. We compare the passive state prepa-
ration described above (first section of the sequence) to an
active scheme, which takes into account the known initial
coherent photon-number distribution and cavity relaxation.
As above, the controller stops the state preparation
sequence as soon as one of the photon-number probabilities
reaches 0.8. The sequence is repeated 9000 times. We
check, for each converged photon number ncov, the final
state of the field by performing ML reconstruction of its
photon-number distribution PMLðnÞ. For this procedure we
use data provided by 400 passive measurement samples
sent after each state preparation sequence. Within a few
percent, the average PðnÞ provided by K after convergence
to ncov is equal to PMLðnÞ.
In order to evaluate the reduction of the convergence

time due to the measurement adaptation, we calculate and
plot in Fig. 4 the fraction ηðtÞ of sequences having
converged before time t for adaptive (black thin line)
and passive (red thick line) measurements. These curves
include all data independently of ncov. Half of the adaptive
sequences converge within 6.9 ms, whereas 10 ms, i.e.,
45% more time, are required for the passive method. The
inset in Fig. 4 shows the ratio of the times required to reach
the same η value in the active and passive methods. Note
that the ratio of entropies reached in the active and passive
methods does not provide a fair measurement of the
speedup factor, as it was the case for Fig. 3(b), since all
adaptive measurements are stopped at PðncovÞ ¼ 0.8,
corresponding to S ≈ 0.3.
In conclusion, we have implemented an adaptive pro-

jective QND measurement applied to the photon number
states of a field stored in a cavity. It relies on the real-time
choice of the atomic meter measurement basis optimizing
the acquisition of information on the system. We have
compared the performance of this method to that of the
passive measurement procedure based on a randomly
chosen measurement basis. The adaptive method is shown

to provide a significant speedup of information acquisition
and a large reduction of the resources (atoms) required.
This is essential for extending the measurement to higher,
thus faster decaying, photon number states. Since their
lifetime scales inversely with their size, the ξ-fold short-
ening of the measurement time straightway increases the
maximal measurable photon number by 1=ξ, making thus
possible the study of quantum states not accessible with
standard passive probing. For instance, this method would
increase the bandwidth of a quantum feedback loop
preparing and stabilizing photon number states of light
[22] and allow us the stabilization of shorter-lived states.
This experiment adapts the measurements performed on

the meter while keeping its interaction with the system
unchanged. The natural extension of this method is to set
also in real time the parameters of this interaction. As was
shown in [23], this strategy allows one to reach ideally the
limit set by information theory according to which N atoms
are enough for counting up to 2N − 1 photons. Numerical
simulations show that a logarithmic dependence of the
number of required resources on the quantum system’s size
can be reached even in the presence of realistic
imperfections.
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