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We present for the first time a theoretical model of studying the saturation of the rupture force of a single
molecular bond that causes the rupture force to be rate independent under an ultralow loading rate. This
saturation will obviously bring challenges to understanding the rupture behavior of the molecular bond
using conventional methods. This intriguing feature implies that the molecular bond has a nonzero strength
at a vanishing loading rate. We find that the saturation behavior is caused by bond rebinding when the
loading rate is lower than a limiting value depending on the loading stiffness.
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Single-molecule dynamic force spectroscopy (DFS) has
been proved a powerful tool in obtaining information on the
intrinsic properties of molecular systems [1–3]. For in-
stance, it allows us to extract the properties of the energy
landscape of molecular interaction (e.g., energy barrier
ΔGoff , width of the energy well xβ and dissociation rate
constant koff ) through the relationship between the rupture
force and loading rate by Bell- or Kramer-like relations [4].
But there have been considerable arguments about the
applicability of these classical relations regarding the range
of pulling rates and device stiffness. These relations may
not be valid at relatively low loading rate; e.g., they might
not be applicable when the loading rate Kv (K the device
stiffness, v the pull velocity) is lower than ∼10 pN=s for a
typical energy landscape with koff ∼ 1 s−1 and xβ ∼ 0.5 nm
[5]. However, the loading devices in many DFS experi-
ments, e.g., laser optical tweezers and magnetic tweezers,
often have a much lower loading rate, as low as 10−3 −
101 pN=s [6–8]. Similarly, under physiological conditions,
the loading rate of a receptor-ligand separation was also as
low as 0.5 − 5 pN=s for a typical molecule pair (e.g., the
avidin–biotin pair [5]) with a classical molecular stiffness
of 1 − 10 pN=nm [9]. These facts challenge the applicabil-
ity of conventional methods in studying the single molecu-
lar interaction at physiological conditions, such as those in
biomedical engineering.
The rupture behaviors of molecular bonds at the ultralow

loading rates have recently received intensive attention
[7,8,10–13] because of its scientific importance as well as
its distinct features compared with those at the faster loading
rates. It was observed that many so-called "mechanical"
proteins (e.g., fibronectin and titin) exhibited a nonzero
asymptotic strength limit of unfolding at a vanishing loading
rate [11,14,15]. Recent experiments showed that at the
ultralow loading rates, the mean rupture force of single
receptor-ligand bond exhibits a similar asymptotic manner

[7,16,17]. These asymptotic behaviors immediately chal-
lenge the conventional understanding of the strength of a
molecular bond that is believed to be rate dependent and to
diminish to zero at a vanishing loading rate. Those obser-
vations thus raise the question of how to understand the
rupture behaviors of a molecular bond at an ultralow loading
rate. Recent modeling activities [18–22], however, mainly
focus on the effect of the loading stiffness. There is no
theoreticalmodel on the bond strength at the ultralow loading
rate. Currently, several fundamental questions remain to be
understood, e.g., what are the differences of the rupture
behaviors of the molecular bond under an ultralow loading
rate in comparison with those under a high loading rate, how
to estimate the critical loading rate below which the conven-
tional methods may fail, and how to improve the DFS
analysis dominated by the conventional methods. This work
is to pursue thesequestions byusingboth theoretical analyses
and Brownian dynamic (BD) simulations. Our results show
that it is the bond rebinding that causes the saturation of bond
strength at ultralow loading rates, which immediately sug-
gests a nonzero strength of a molecular bond even at the
vanishing loading rate. A new theory is developed for
designing and analyzing the DFS experiments and simu-
lations at ultralow loading rates.
Here, we treat the force-induced bond rupture as a

thermally activated escape of a particle (A) over a single
energy barrier that is perturbed by an external force (see
Fig. 1). The energy landscape of the single-molecule
system is illustrated in Fig. 1(a), where ΔGon and ΔGoff

are the energy barriers for association and dissociation,
respectively, and xβ is the width of energy well. Because
ΔGon is normally very small (e.g., ∼5 kBT) in comparison
with ΔGoff , for the convenience of the analysis, we neglect
the effect of ΔGon so that the energy landscape can be
modeled by a harmoniclike potential that is harmonic for
x < xβ, but becomes flat when x > xβ (dashed line
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becomes solid line). An external force is applied on a
dummy particle (B) via a harmonic spring of stiffness K
which mimics the pulling device. The free energy of the
combined system consisting of the particle and the pulling
spring can be expressed by

βUmðx; tÞ ¼ βU0ðx; tÞ þ
1

2
K½x − xcðtÞ�2; (1a)

and

βU0ðx; tÞ ¼
8<
:ΔGoff

�
x
xβ

�
2 −∞ < x ≤ xβ

ΔGoff xβ < x < ∞
; (1b)

where β ¼ ðkBTÞ−1, kB is Boltzmann constant and T is
absolute temperature. The term ð1=2ÞKðx − xcÞ2 is the
elastic energy stored in the pulling spring, while xcðtÞ ¼ vt
is the displacement of dummy particle at time t, and v is the
pulling speed. The energy landscape of the combined
system is illustrated in Fig. 1(b). Note that the effective
stiffness of the combined system is Keff ¼ K0K=ðK0 þ KÞ
[19], where K0 ¼ 2ΔGoff=x2β is the intrinsic stiffness of the
molecular interaction. In this Letter, for the convenience of
a comparison with DFS experiments, we use Kv as the
apparent loading rate in the plot of results.
Different from previous works [18–21], here, we study

the bond rupture at an ultralow loading rate by considering
the bond rebinding. The ultralow loading rate denotes the
pulling rate at which the bond rebinding dominates the
rupture behaviors. Previous models based on Kramers'
description of irreversible rupture did not take into account
the rebinding effect [18–21]. Therefore, the rupture force
calculated by those models is different—the rupture of a
molecular bond happens once the position of particle A

satisfies x ¼ xβ, and the bond rebinding is not considered.
In contrast, in this study, the rupture can happen at a
position x > xβ with multiple times of bond rebinding,
which enhances the rupture strength of a molecular bond.
The rupture process of the particle A being pulled out of

the energywell is firstly simulated using the BD simulations
(more simulation details are given in the text S1 and Fig. S1
in the SupplementalMaterial [23]). The results show that the
rupture force decreases with reducing the loading rate. In
addition, the slope of the hFimax ∼ lnðKvÞ plot also
decreases with the loading rate. When the loading rate is
reduced to below a critical value, the rupture force becomes
rate independent, see Fig. 2(a). This result is consistent with
recent experiments [7,11,14–17] showing that there are
asymptotic strength limits for the rupture of a single
receptor-ligand bond as well as the unfolding of β-sheet-
rich proteins at the ultralow loading rates. It thus suggests a
nonzero strength of a molecular bond even at a vanishing
loading rate, which is different from previous studies
[18–21]. In this Letter, we call the asymptotic strength limit
value as the saturating rupture force. Note that the saturating
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FIG. 1 (color online). Illustration of the energy landscape of the
single molecule bond. (a) A single well energy landscape, where
xβ is the width of energy well, x is the position of particle A, and
xc is the position of dummy particle B. The part of the energy
landscape in the blue dashed line is simplified to a plateau of the
landscape at x > xβ, neglecting the effect of ΔGon for the
convenience of analytical analysis. (b) Illustration of the intrinsic
energy landscape (in black) as well as the combined energy
landscape tilted by the loading device at two different loading
stiffness (in blue and red). xFmax

c is the critical position of the
dummy particle B for bond rupture. Erb is the energy barrier of
the combined system for bond rebinding.
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FIG. 2 (color online). (a) The mean rupture force obtained from
the BD simulations for a different spring constant K, with
ΔGoff ¼ 30 kBT, xβ ¼ 2 nm. The unit of the spring constant K
is pN=nm. (b) The relationship between the saturating rupture force
and the stiffness of the loading deviceK. The solid and dashed lines
are for the numerical and analytical solutions of Eq. (5), respec-
tively, and the symbols are for the results of the BD simulations.
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rupture force increases with the loading stiffness and can be
significant at a high stiffness. We also found that the slower
the loading rate, the more significant the rebinding effect on
the rupture process. Figure S2 depicts typical force traces
obtained from three different loading rates [23]. These
results suggest that the rebinding takes a more dominant
role in the bond rupture behavior at the ultralow loading rate.
To study the effect of rebinding on the rupture force, we

will first derive the mean position of a particle A for
calculating the pulling force. Based on the BD simulation
results, we assume that the rate of relaxation of the particle
A is much faster than the velocity of the dummy particle B
as long as the pulling rate is sufficiently slow. As a result,
particle A can have enough time to travel to all of the
possible positions in the energy landscape driven by
thermal fluctuation. Thus, the partition function Z of the
system at time t is given by Z ¼ R∞−∞ exp½−βUmðx; tÞ�dx,
and the probability of particle A appearing at position x is
pðxÞ ¼ ð1=ZÞ exp½−βUmðx; tÞ�. Our BD simulation results
fully support this assumption that when the pulling velocity
is sufficiently slow, particle A has the possibility to travel
back to the energy well after its escape, which then induces
the rebinding of the molecular bond (Fig. S2) [23]. Thus,
the average position of particle A is obtained as
hxi ¼ R∞−∞ xpðxÞdx. By plugging the expression of pðxÞ
into hxi, we have

hxi ¼ xc

1
ξ2
þ ξ exp

h�
x2c
x2βξ

2 − 1
�
ΔGoff

i
1þ ξ exp

h�
x2c
x2βξ

2 − 1
�
ΔGoff

i ; (2)

where ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΔGoffþKx2β

Kx2β

r
. According to Eq. (2), we can

obtain the mean force determined by the extension of
the spring at the ultralow loading rate as

hFi ¼ Kðxc − hxiÞ. (3)

By applying ðdhFi=dxcÞ ¼ 0, we obtain the critical posi-
tion of the dummy particle B for the maximum value of the
mean force (i.e., the rupture force) as

xFmax
c ¼ xβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

ΔGoff

�
LambertW

�
expðΔGoff − 1

2
Þ

2ξ

�
þ 1

2

	s
.

(4)

where LambertWðxÞ is the LambertW function that satisfies
the condition LambertWðxÞ × exp½LambertWðxÞ� ¼ x.
Thus, the rupture force at ultralow loading rate is obtained
as

hFimax ¼ KðxFmax
c − hxiFmaxÞ

¼
K
�
1 − 1

ξ2

�
1þ ξ exp

nh�
xFmax
c
xβξ

�
2 − 1

i
ΔGoff

o xFmax
c . (5)

where hxiFmax is calculated by substituting Eq. (4)
into Eq. (2).
Figure 2(b) shows the comparison between the BD

simulations and the theoretical predictions of saturating
rupture forces in terms of spring constants of pulling device.
The theoretical predictions agree well with those of the BD
simulations. Note that the saturating rupture force increases
with the probe stiffness in a nonlinear fashion. This is a new
finding of the effect of the loading stiffness on the rupture
force which is different from the one found in previous
studies at a high loading rate [18–21]. They showed that the
increase of loading stiffness reduces the bond dissociation
rate, which results in the increase of the rupture force. Here,
we show below that besides that mechanism, the increase of
the loading stiffness will further increase the rupture force at
the ultralow loading rate because of its effect on bond
rebinding. Tshiprut et al. [18] had shown in their simu-
lations that the stiffness of the loading device can influence
the bond rebinding dynamics. In particular, we show that the
saturating rupture force is also a function of ΔGoff and xβ
[see Fig. 2(b)]. This result suggests a new method of
extracting the properties of the energy landscape by
measuring the saturating rupture force at a different loading
stiffness and then calculating ΔGoff and xβ using Eq. (5)
(Table S1 in the Supplemental Material [23]).
We also find that the higher the pulling stiffness, the

higher the critical loading rate at which the saturation
appears, according to Fig. 2(a). This phenomenon can be
understood by studying the effect of the pulling stiffness on
the energy barrier for rebinding as follows. The energy
barrier for the rebinding is given by [see illustration in
Fig. 1(b)]

Erb

¼1

2
KðxFmax

c −xβÞ2

¼1

2
Kx2β

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

ΔGoff

�
LambertW

�
expðΔGoff−1

2
Þ

2ξ

�
þ1

2

	s
−1

!2

.

(6)

Figure 3 depicts the energy barrier Erb as a function of the
spring constant, in which the relationship between xFmax

c
and the spring constant is also illustrated. Note that the
lower the spring stiffness K, the higher the energy barrier
that the particle A needs to overcome for the rebinding. This
result seems to be counterintuitive because when the spring
stiffness is lower, it should be easier for particle A to rebind
as there is less restriction from the softer spring. How to
understand this behavior? According to Eq. (4), xFmax

c is
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approximately proportional to
ffiffiffiffiffiffiffiffiffi
1=K

p
(see text S2 in the

Supplemental Material [23]). Substituting this relationship
into Eq. (6) and considering xFmax

c − xβ > 0, we can
immediately prove that the energy barrier increases with
the decease of spring stiffness. The mechanism is that when
the spring stiffness is decreased, the particle A needs to
travel a longer distance (i.e., xFmax

c − xβ) for rebinding and
therefore, has less possibility to rebind. In order to make it
possible, it requires a slower loading so that the particle A
has enough time for the rebinding. Therefore, the smaller
the K value, the lower the loading rates for the saturation of
the rupture force [see also Fig. 2(a)].
The stiffness dependent rupture force of a receptor-ligand

bond may be related to the mechanosensitivity of the cell
adhesion to the stiffness of extracellular matrix (ECM); e.g.,
cells prefer to spread and form stable adhesion at a stiff
substrate [24–27]. Because the stiffness of substrate is one of
the main contributors to the loading stiffness of receptor-
ligand bonds in cell adhesion, the stiff substrate will
facilitate the receptor-ligand rebinding, while the soft one
will suppress it [24,25]. As a result, the receptors and ligands
would form stronger bonds at the stiffer substrate for a more
stable cell adhesion compared with the softer one. This
Letter provides further evidence for the mechanosensitivity
of cell adhesion from the molecular level.
On the other hand, the saturation of rupture force will,

however, bring challenges to DSF analysis using prior
theories. For example, we find that they will not be valid
when Kv < ðkoff=xβÞ expðγÞ, where γ ≈ 0.577 is the Euler
constant [4]. Therefore, it is crucial to identify the critical
loading rate at which the saturation will occur before we
decide whether prior theories could be applied. In order to
estimate the threshold value of the loading rate, we need first
to estimate the first passage time of particle A for rebinding,
i.e., the time for its moving back to the energy well once
it is pulled out. The first passage time tK is defined as
the mean time for a particle to diffuse toward a distance

x0 ¼ xFmax
c − xβ in the energy well, which defines the time

scale for the rebinding of particle A. For a harmonic
potential which satisfies 1

2
Kx20 ≫ 1, the first passage time

can be estimated as (see text S3 in the Supplemental
Material [23])

tK ¼ 1

D

ffiffiffiffiffiffi
2π

K

r �
1

KðxFmax
c − xβÞ

�
exp

�
KðxFmax

c − xβÞ2
2

�
.

(7)

Thus, we can estimate the critical loading rate for
rebinding as,

Kvrb ¼ K
xFmax
c − xβ

tK
. (8)

When the loading rate satisfies Kv ≤ Kvrb, i.e., being the
ultralow loading rate, the rebinding may cause saturation of
the rupture force. Figure 4 depicts the changing of the first
passage time tK and the critical loading rate Kvrb as
functions of a spring constantK, showing a good agreement
between the theoretical predictions andBD simulations. The
smaller the spring constant K, the more time the particle A
needs for the rebinding, and thus, the lower the critical
loading rate [see alsoFig. 2(a)]. For example,Chen et al. [28]
measured the unfolding force of Filamin A rod segments
using magnetic tweezers which has a stiffness around
10−6 pN=nm [29]. In this case, the critical loading rate
for the saturation of the unfolding forces should be as low as
10−8 pN=s. This is the reason that the unfolding force always
depends on the loading rates in the range from 0.2 pN=s to
20 pN=s in Chen et al. experiment [28]. It is expected that
when the stiffness of the pulling device approaches zero,
rebinding should be prohibited. This behavior is opposite to
the case where the pulling device has a high stiffness, which
confines the locations of the particle A and therefore, allows
rebinding to happen. This also implies that the traditional
Bell- orKramer-like relations should be still applicable to the
experiments using magnetic tweezers.
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Knowledge of the critical loading rate Kvrb is crucial to
the DFS analysis. On one side, it can help improve the
predictions of DFS analysis. For example, because the
rebinding effect can significantly influence the slope of
hFimax ∼ lnðKvÞ plot, previous theories [4]may not correctly
predict theproperties of theenergy landscapebysimply fitting
theplotwhenthe loadingrate issmaller thanKvrb [seeEq. (8)].
Therefore, a data filtration (to filter out the data with bond
rebinding) is needed to improve the accuracy of predictions
(see Table S1 in the Supplemental Material [23]). Table S1
shows that for a higher loading stiffness, when there aremore
data obtained at the ultralow loading rate, there are big errors
in the predictions by direct fitting, and the filtration signifi-
cantly improves the predictions. On the other side, the knowl-
edge of Kvrb will also provide guidelines for choosing the
spring constant of a loading device and a loading rate in DFS
experiments to reduce the rebinding effect. For a stiff loading
device, one should choose a fast loading. However, for a soft
device, one can choose a slow one.
In conclusion, we have studied the saturation of the rupture

force which is a new feature of the single receptor-ligand
bond that was not found before. We showed that when the
loading ratewas smaller than a critical value, the rupture force
became no longer dependent on the loading rate, which
implies a nonzero strength of amolecular bond at a quasistatic
loading.We found that this saturation behaviorwas caused by
a bond rebinding at the ultralow loading rate. We further
derived an analytical solution of the limiting loading rate
below which the bond rebinding dominates the rupture
process, which is found to increase with the stiffness of
loadingdevice. This solutionwill assist us to determinewhich
DFS data are valid for calculating the properties of an
energy landscape by fitting the hFimax ∼ lnðKvÞ plot using
conventional methods, and thus, to highly improve the
predictions. It would also provide guidelines for preparing
DFS experiments and simulations on how to choose the
loading rates according to the stiffness of loading devices.
More importantly, we also suggested a new way to design
DFS experiments bymeasuring the saturating rupture force at
different loading stiffness, by which one can accurately
calculate the parameters of energy landscapes of a molecular
bond.
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