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We analyze inertial granular flows and show that, for all values of the inertial number I, the effective
friction coefficient μ arises from three different parameters pertaining to the contact network and force
transmission: (1) contact anisotropy, (2) force chain anisotropy, and (3) friction mobilization. Our extensive
3D numerical simulations reveal that μ increases with I mainly due to an increasing contact anisotropy and
partially by friction mobilization whereas the anisotropy of force chains declines as a result of the
destabilizing effect of particle inertia. The contact network undergoes topological transitions, and beyond
I ≃ 0.1 the force chains break into clusters immersed in a background “soup” of floating particles. We
show that this transition coincides with the divergence of the size of fluidized zones characterized from the
local environments of floating particles and a slower increase of μ with I.
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From large-scale geological events to a variety of
industrial processes involving bulk materials and powders,
the flow behavior of granular materials has been a subject
of intensive research for many years [1–6]. The diversity of
boundary conditions and confining geometries made it
difficult for a long time to extract the intrinsic rheology of
dense inertial flows until a unification was achieved by
analyzing several experimental and numerical data in terms
of a single dimensionless inertial number I, defined as the
ratio of the particle relaxation time ðm=pdÞ1=2, under an
average or confining stress p and for a particle of mass m
and diameter d, to shear time γ

:−1 imposed by the flow rate γ
:

[7,8]. The model arising from this seminal work is based on
a generic dependence of the effective friction coefficient μ
and packing fraction ν on I.
This empirical model of steady granular flows, in

combination with continuum conservation equations, cor-
rectly predicts the velocity and stress fields in various flow
geometries [7,9–11]. However, it still lacks a clear particle-
scale foundation. The increase of μ with I despite an
increasingly lower packing fraction is a nontrivial property
that reveals a genuine microstructure. A few studies
reported on the microstructure of inertial flows [8,12–15]
show that, as I increases, the force chains become more
sparse, the correlation length of connected particles
decrease [5,16,17] , the contact lifetimes decline, and an
increasing number of impulsive forces [18,19] and fric-
tionally mobilized contacts [4,8] come into play. But a
challenging issue is how to connect such particle-scale
observations with the rheology.
In this Letter, we analyze inertial granular flows by

means of a stress partition that readily links the μðIÞ
rheology to three different particle-scale mechanisms:
(1) contact anisotropy, (2) force chain anisotropy, and
(3) friction mobilization. The data are obtained from
extensive contact dynamics simulations of homogeneous

shear flow with spherical particles for a broad range of I
varied from low to very high values. Stress partition has
been successfully applied to quasistatic deformations
[20–24] but never to inertial flows. As we shall see below,
the relative importance of local mechanisms evolves with
I and therefore the flow structure undergoes qualitative
transitions that underlie the evolution of the effective
friction. Such transitions are consistent with the correlative
evolution of the statistics of fluidized zones that we analyze
by considering the clustering of floating particles.
Contact dynamics simulations were carried out with

Np ¼ 24 000 spheres. The packing is sheared between two
parallel rough walls by imposing a constant horizontal
velocity Vy on the top wall and periodic boundary con-
ditions along the flow in the y direction and along the
transversal x direction. The packing is confined by a
constant compressive stress σzz applied on the top wall
along the z direction; see Fig. 5(a). A small polydispersity
ð1� 0.1Þd in particle diameters is introduced to prevent
crystallization at the walls. The gravity is set to zero in
order to avoid strain localization at the boundaries and to
ensure a uniform stress field in the bulk. In the contact
dynamics method, the particles are treated as perfectly rigid
so that I is the only relevant dimensionless parameter of
flow [24–26]. Contact dissipation is modeled in terms of
normal and tangential restitution coefficients en and et as
well as a friction coefficient μs between particles. We set
μs ¼ 0.4 and en ¼ et ¼ 0. This choice corresponds to a
highly dissipative packing. We note that the values of
restitution coefficients have nearly no influence on dense
granular flows as inelastic collisions occur at high fre-
quency and dissipate the kinetic energy at time scales far
shorter than those of shear and particle relaxation [7,8].
Under the action of the applied shear strain, all

samples dilate from their initial high density and tend to
a steady flow characterized by a linear velocity profile. We

PRL 112, 078001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

0031-9007=14=112(7)=078001(5) 078001-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.078001
http://dx.doi.org/10.1103/PhysRevLett.112.078001
http://dx.doi.org/10.1103/PhysRevLett.112.078001
http://dx.doi.org/10.1103/PhysRevLett.112.078001


performed 17 simulations for a broad range of I varied from
6 × 10−4 to 0.72 by keeping the same shear rate and
changing the confining pressure [27]. The data presented in
this Letter are average values over the steady state with
standard deviations used as error bars. The values of I are
obtained from the average stress p, which fluctuates in the
steady state around the average stress. The error bars on
the values of I represent these fluctuations. Obviously, the
fluctuations increase with I, and thus the data are to be
sampled more frequently in the steady state in order to
reach meaningful statistics.
The stress state being invariant along the x direction, we

consider here only the restriction σ of the stress to the shear
plane yz. It may be expressed as [28]

σαβ ¼ nchfcαlc
βi; (1)

where nc is the number density of the contacts and the
average is taken over the contacts c with contact force
component fcα and branch vector lc

β joining the centers of
contacting particles. Note that, the contribution of particle
velocity fluctuations (hmvαvβi=V) remains very small
compared to that of contact forces in all the simulations
considered here. According to the Mohr-Coulomb model,
the effective friction coefficient during shear is given by
μ≃ q=p, where p ¼ ðσ1 þ σ2Þ=2 is the mean stress and
q ¼ ðσ1 − σ2Þ=2 is the stress deviator, and σ1 and σ2 are the
principal values on the shear plane [29].
Figure 1 displays μ and ν obtained from our simulations

and a compilation of available published numerical and
experimental data from several authors for different boun-
dary conditions as a function of I [1–5,30] [31]. We see that
our numerical data collapse well with all other data. The
effective friction coefficient increases and tends to saturate
with increasing I whereas the packing fraction declines
from 0.59 in the quasistatic state to 0.50 for our highest
values of I. Note that 0.59 corresponds to the density of a
packing of frictional spheres under continuous quasistatic
shearing, as also evidenced by experiments [32].
Relying on our numerical data, we now focus on the

stress partition in connection with the effective friction. Let
us express the average in (1) as an integral:

σαβ ¼ nc

Z Z Z
fαlβ Plfn df dldn; (2)

where Plfn is the joint probability density of forces and
branch vectors l ¼ ln projected on the shear plane. At the
lowest-order description of the microstructure, we neglect
the force-fabric correlations and split P as a product
Plfn ¼ PlðlÞPfðf ÞPnðnÞ. Integration over f and l yields:

σαβ ≃ ncl0

Z
Ω
hfαiðnÞnβPnðnÞdn; (3)

where Ω is the angular domain of integration and hf iðnÞ is
the average force as a function of n and hli ¼ l0.

The contact force on the shear plane can be decomposed
into its normal and tangential components hfniðnÞ and
hftiðnÞ, and n is parametrized by its orientation θ. The
three functions PðθÞ, hfniðθÞ, and hftiðθÞ are π periodic
and, as shown in Fig. 3, they can be well approximated by
their lowest-order Fourier expansions [20–23,33]:

PðθÞ≃ 1=πf1þ ac cos 2ðθ − θcÞg;
hfniðθÞ≃ hfnif1þ an cos 2ðθ − θnÞg;
hftiðθÞ≃ −hfniat sin 2ðθ − θtÞ; (4)

where ac, an, and at are anisotropy parameters, and θc ≃
θn ≃ θt are the corresponding privileged directions on the
shear plane, and nearly coincide with the major principal
stress direction in the steady state. Now, introducing
Eqs. (4) into the integral [Eq. (3)], and neglecting the
cross products of the anisotropy parameters, one gets the
simple relation

μ≃ 1

2
ðac þ an þ atÞ: (5)

The predicted values of μ by this equation from the
anisotropy parameters are shown in Fig. 2 together with
those obtained from the stress tensor as a function of I. We
see that Eq. (5) approximates excellently the effective
friction for all values of I. This result indicates also that
the expression Eq. (1) of the stress tensor holds correctly for
high inertia where impulsive forces prevail.
The evolution of the three anisotropies with I is plotted

in Fig. 3. Interestingly, the normal force anisotropy an
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FIG. 1 (color online). Effective friction coefficient (a) and
packing fraction (b) as a function of I. The data analyzed in
this Letter are in blue triangles. The other data are extracted from
Refs. [1–5,30]. The dashed line shows the fitting form μ ¼
μ0 þ ððμ1 − μ0Þ=ð1þ I0=IÞÞ introduced in Refs. [9,10].
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decreases and tends to a constant value whereas the friction
force anisotropy slightly increases with I. At the same time,
the contact anisotropy ac is a sharply increasing and
nonlinear function of I. This means that, since by virtue
of Eq. (5) the three anisotropies add up to build the effective
friction, the contact anisotropy is the principal micro-
structural cause of the increase of effective friction as a
function of the inertial number. In general, ac varies
oppositely with the coordination number z, which declines
in our simulations from 4.5 to 1.1 as I varies from 10−4 to
0.7. This is because the contact anisotropy is mainly a
consequence of the loss of contacts in the extension
direction [34]. The normal force anisotropy an reflects
the force chains, which are increasingly destabilized by
particle inertia causing an to decrease. Hence, the friction
force anisotropy at, which reflects friction mobilization
(hjftji=hfni ∝ at), grows to restabilize the force chains and
thus takes part more actively in force transmission [23].
Since the contact anisotropy and coordination number

seem to be sensibly important with respect to the effective
friction, we now turn to the connectivity of the contact
network in order to obtain morphological clues to the
evolution of the force network. The connectivity can be
described by the proportion Pk of force-bearing particles
having k ≥ 1 contacts and the proportion P0 of floating

particles, i.e., not participating in the force network. Note
that

P
k≥1Pk ¼ 1 and

P
k≥1kPk ¼ z. Figure 4 displays Pk

for k ¼ 1 to 8 and P0 as a function of I. We observe several
nontrivial topological transitions. For I < 0.01, the effect of
inertia leads to the reduction of highly connected particles
(k > 4) in favor of low-connected particles (k < 4) while
P4 remains nearly constant. In this range, P0 ≃ 0.07. At
higher values of I, the force network is further destabilized
and P4 begins to decline whereas P3 keeps increasing up to
a peak value at I ≃ 0.1 beyond which P3 also begins to
decline whereas P2 continues to increase. The loss of
particles having 3 contacts is a dramatic change in the
microstructure as multiple contacts may thereafter occur
mainly in the form of linear force chains without branching,
as observed in Fig. 6(d). P0 increases slightly in this range
from 0.07 to 0.2 but undergoes a sharp increase beyond
I ≃ 0.1. For I > 0.3, the flow is dominated by P2 and P1

(corresponding to the collisions of floating particles).
The sharp transition observed at I ≃ 0.1 for P0 coincides

with the slowing down of μðIÞ; see Fig. 1 on the linear
scale. At the same time, the normal force anisotropy ceases
to decline and takes a constant value an ≃ 0.2; see Fig. 3.
The fact that beyond I ≃ 0.1 the force anisotropy does not
follow the contact anisotropy indicates that the force chain
formation during flow is hindered by collisions, and the
contacts do not live long enough to sustain percolating
force chains. Indeed, at I ≃ 0.1 a fraction P�

0 ¼ 0.2 of
particles is floating and this fraction of particles discon-
nected from the force network is consistent with the site
percolation threshold of a hexagonal compact packing [35].
This means that, beyond I ≃ 0.1, the effect of inertia may
be analyzed more sensitively in terms of the evolution of
floating particles rather than connected chains, whose
correlations have already been a subject of several studies
to characterize the transition from inertial regime to
quasistatic regime [13,16].
The floating particles actually provide a complementary

picture in terms of fluidized zones defined from the
neighborhoods of floating particles. For each floating
particle i, let Pi

0ðI; RÞ be the proportion of floating particles
for a spherical volume of radius R centered on i. We
determine the size Ri of the fluidized zone by requiring

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
-4

10
-3

10
-2

10
-1

10
0

I

0.3

0.4

0.5

0.6

0.7

0.8

Prediction
Raw data

FIG. 2 (color online). Effective friction coefficient μ (black
circles) together with its harmonic approximation [Eq. (5)] (red
squares) as a function of inertial number I.
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Pi
0ðI; RiÞ ¼ P�

0. In words, this is the size of the spherical
volume in which the density of floating particles is equal to
the percolation threshold P�

0. The distribution PðRÞ of the
sizes of fluidized zones for a given value of I can be
evaluated from the set fRig and, their mean size Rmean is
determined by double averaging Ri over all floating
particles and during shear. This construction is nearly dual
to the 2-point cluster function introduced by Torquato
et al. [36,37].
Figure 5 shows four snapshots of floating particles for

different values of I. At low I the floating particles are
mostly isolated, but they tend to cluster into fluidized zones
as I increases. Figure 6 displays the clustering length Rmean
as a function of I. The inset shows the statistical distribu-
tions of Ri for several values of I. We see that Rmean is
nearly constant and equal to 2d for I < 0.1, as expected for
isolated floating particles. Thereafter, Rmean grows rapidly
with I and reaches the system size for I ≃ 0.3. This
evolution reflects the coalescence process of fluidized
zones and a transition to the collisional regime at I ≃
0.3 where P0 > 0.6. This process is also clearly evidenced
by the evolution of the size distributions of fluidized zones,
which broaden as I increases up to I ≃ 0.1. For I > 0.1, the
distribution develops a second peak for R equal to the
system size whereas the mean size of the fluidized zones
continues to increase.
To summarize, in the range I < 0.1 the force anisotropy

reflects percolating force chains, which are progressively
destabilized by inertial effects with increasing I. As a result,
the force anisotropy declines towards a residual constant
value an ≃ 0.2 for I > 0.1. This residual force anisotropy is
essentially induced by collisions due to shearing, which
begin to affect the microstructure in the form of fluidized
zones of increasing size that coalesce at I ¼ 0.3. Hence, in
the whole range I > 0.1, the microstructure may be

described as composed of short-lived and impulsive force
chains embedded in a “soup” of floating particles. The
contact anisotropy grows due to enduring force chains and
by loss of contacts for I < 0.1 and due to both impulsive
force chains and shear-induced collisions of floating
particles beyond I ¼ 0.1. This geometrical anisotropy
provides the main additive contribution to the effective
shear friction of the flow according to Eq. (5). The
transition to a fully collisional regime occurs at I ≃ 0.3
where the whole system is in a fluidized state. Let us also
note that the value I ¼ 0.3 may be identified with the
reference value I0 in the fitting form introduced in
Ref. [9,10] and shown in Fig. 1.
The above picture reveals the highly nonlinear evolution

of the microstructure with increasing inertial number that
we analyzed in terms of three anisotropy parameters, which
underly additively the effective friction. The dynamics of
local structures may be further investigated by considering
in detail the contact lifetimes, the process of contact gain
and loss, and the role of impulsive forces, as discussed in
Refs. [18,19] regarding the jamming transition in a
suspension.
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