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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates,
originating from oxygen-mediated exchange through edge-shared octahedra. However, for the jeff ¼ 1=2
Mott insulator in these materials, exchange from direct d-orbital overlap is relevant, and it was proposed
that a Heisenberg term should be added to the Kitaev model. Here, we provide the generic nearest-neighbor
spin Hamiltonian when both oxygen-mediated and direct overlap are present, containing a bond-dependent
off-diagonal exchange in addition to Heisenberg and Kitaev terms. We analyze this complete model using a
combination of classical techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic
phases, 120° and incommensurate spiral order, as well as extended regions of zigzag and stripy order.
Possible applications to Na2IrO3 and Li2IrO3 are discussed.
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The honeycomb family of iridium oxides [1–11] has
attracted a considerable amount of attention [12–17,17–20]
due to the possibility they lie near a realization of Kitaev’s
exactly solvable spin-1=2 honeycomb model [21]. This
model hosts a number of remarkable features: a Z2 spin
liquid with gapless Majorana fermions and (non-Abelian)
anyonic excitations under an applied magnetic field.
No symmetry principle excludes terms besides the
Kitaev, so additional interactions are generically expected.
From microscopic calculations of exchange mediated
through the edge-shared oxygen octahedra, it has been
proposed that a pure Kitaev model of jeff ¼ 1=2 spins was
the appropriate description [22]. It was further suggested
that direct overlap of the d orbitals generalizes this to a
Heisenberg-Kitaev (HK) model [13], linearly interpolating
between an isotropic Heisenberg model and Kitaev’s bond-
dependent exchange Hamiltonian. Extensive study of the
HK model [23–28] has shown a variety of fascinating
phenomena, including an extended spin liquid phase and
quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase
seen in Na2IrO3 [2,4,6] is difficult to stabilize within the
HK model; one must resort to additional t2g − eg exchange
paths [18] or further neighbor hoppings [14]. In light of
this puzzle, one may question whether the HK model
provides an adequate description of the honeycomb iridates
even at the nearest-neighbor level.
In this Letter, we show that when applied to the

honeycomb iridates the HK model is incomplete, explicitly
deriving the jeff ¼ 1=2 spin model from a multiorbital t2g
Hubbard-Kanamori Hamiltonian. Considering the most
idealized crystal structure, an additional spin-spin inter-
action beyond the HK model must be included: bond-
dependent symmetric off-diagonal exchange. The complete
spin Hamiltonian has the form

H ¼
X

hiji∈αβðγÞ
½JS⃗i · S⃗j þ KSγi S

γ
j þ ΓðSαi Sβj þ Sβi S

α
j Þ�; (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and Γ denotes the symmetric off-diagonal exchange. On
each bond, we distinguish one spin direction γ, labeling the
bond αβðγÞwhere α and β are the two remaining directions.
Examining the phase diagram using a combination of
classical arguments and exact diagonalization, we find that
with the inclusion of Γ, new magnetic phases are stabilized
near the Kitaev limits: an incommensurate spiral (IS) and
120° order, in addition to extended regions of zigzag and
stripy order.

FIG. 1 (color online). Crystal structure of the honeycomb
iridates A2IrO3 with Ir4þ in black, O2− in white, and
A ¼ Na2þ;Li2þ in gray. For the Kitaev and bond-dependent
exchanges we have denoted the yzðxÞ bonds blue, the zxðyÞ
bonds green, and the xyðzÞ bonds red.
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Microscopics.—We first construct a minimal model of a
honeycomb lattice of Ir4þ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4þ 5d levels are split
into an eg doublet and t2g triplet by large crystal field
effects, leaving a single hole in the t2g states. Within the t2g
manifold, the orbital angular momentum behaves as an
leff ¼ 1 triplet, with large spin-orbit coupling splitting this
into an active jeff ¼ 1=2 doublet and filled jeff ¼ 3=2
states. Because of significant on-site interactions, localized
jeff ¼ 1=2 spins provide an effective model for the low-
energy physics. To perform the strong coupling expansion,
we consider an atomic Hamiltonian of Kanamori form [29]

H0 ¼
X
i

�
U − 3JH

2
ðNi − 5Þ2 − 2JHS2i − JH

2
L2
i

�
; (2)

where Ni, Si, and Li are the total number, spin, and
(effective) orbital angular momentum operators at site i, U
is the Coulomb interaction, and JH is Hund’s coupling. The
expansion is carried out in the limit U; JH ≫ λ ≫ t, first
taking U and JH to be large. Since the spin-orbit coupling
then dominates the kinetic terms, the resulting spin-orbital
model can be projected into the jeff ¼ 1=2 subspace.
The kinetic terms are encapsulated through a tight-

binding model for the Ir t2g orbitals, including both direct
overlap of d orbitals and hopping mediated through the
oxygen atoms. For our purposes, we focus on nearest-
neighbor bonds where we then have

X
hiji∈αβðγÞ

�
t1ðd†iαdjαþd†iβdjβÞþt2ðd†iαdjβþd†iβdjαÞþt3d

†
iγdiγ

�
;

where d†iα ¼ ðd†iα↑d†iα↓Þ and diα are the creation and anni-
hilation operators for the t2g state α at site i. Here, we sum
over the yzðxÞ, zxðyÞ; and xyðzÞ links as indicated in Fig. 1,
but mapping the directions to orbitals as x → yz, y → zx;
and z → xy. The parameters t1, t2, and t3 are given by

t1¼
tddπþ tddδ

2
; t2¼

t2pdπ
Δpd

þ tddπ− tddδ
2

; t3¼
3tddσþ tddδ

4
;

where tddσ, tddπ , tddδ, and tpdπ are Slater-Koster [30]
parameters for the direct Ir − Ir overlap and Ir − O overlap
while Δpd is the Ir − O gap [31]. Treating the kinetic
terms as a perturbation yields theHamiltonian inEq. (1)with

J ¼ 4

27

�
6t1ðt1 þ 2t3Þ
U − 3JH

þ 2ðt1 − t3Þ2
U − JH

þ ð2t1 þ t3Þ2
U þ 2JH

�
; (3)

K ¼ 8JH
9

� ðt1 − t3Þ2 − 3t22
ðU − 3JHÞðU − JHÞ

�
; (4)

Γ ¼ 16JH
9

�
t2ðt1 − t3Þ

ðU − 3JHÞðU − JHÞ
�
: (5)

Exchanges of the same form as the Γ term were originally
called symmetric anisotropic exchange [32,33] and can be
related to the truncated dipolar exchange [34,35] discussed
in other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most
idealized cases, the presence of theΓ term is a generic feature
of jeff ¼ 1=2 models with edge-shared octahedra (see the
Supplemental Material [36] for more information). To
confirm this, the strong coupling expansion was also carried
out in the limit whereU, λ ≫ JH ≫ t, with the contributions
of JH included in the excited states perturbatively.
While energies of the virtual states involve λ instead
of JH, all three terms are generated, with the dependence
of K and Γ on the hoppings t1, t2, and t3 unchanged
(Supplemental Material [36]). Whereas the Kitaev limit
can be naturally accessed when t2 ≫ t1; t3, leaving this
regime introduces both J and Γ making it difficult to reach
the HK limit [37]. Fine tuning could in principle render
Γ small, but the dominant contributions to t1 ∼ tddπ and
t3 ∼ tddσ are of opposite sign, making any such tuning
implausible. Further applications to wider classes of iridium
oxides are left for future work.
Classical phase diagram.—To understand the effects of

including this bond-dependent Γ term, we first map out the
classical magnetic phases. We parametrize the exchanges
using angles ϕ and θ

J ¼ sin θ cosϕ; K ¼ sin θ sinϕ; Γ ¼ cos θ; (6)

fixing the energy scale so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ K2 þ Γ2

p
¼ 1. By

mapping S⃗i → −S⃗i on one sublattice, we send ϕ → −ϕ and
θ → π − θ, so we can consider only Γ > 0. To obtain the
classical phase diagram, the Luttinger-Tisza approximation
[38,39] is first used. In this approximation, the constraint of
fixed spin length is released, allowing for a direct solution
of the classical model. In the regions of the phase diagram
where this fails, we have further supplemented this with an
analysis of a single-Q ansatz. The combined results are
shown in Fig. 2(a) with 0 < θ ≤ π=2 mapped to the radial
direction and 0 ≤ ϕ < 2π mapped to the angular direction.
When the resulting spin configuration satisfies the local

length constraint, the Luttinger-Tisza method yields the
exact classical ground state. This holds for most of the
phase diagram aside from the region in Fig. 2(a) indicated
by dashed white lines. In this region, we consider spin
configurations of the form

S⃗i ¼ sin ηi½êxi cos ðQ⃗ · r⃗iÞ þ êyi sin ðQ⃗ · r⃗iÞ� þ cos ηiê
z
i (7)

where the canting angles ηi and local frames defined by
(êxi , êyi , êzi ) are independent variational parameters on
two sublattices. The energy of the ansatz is minimized
over the variational parameters and Q⃗ for each pair of
angles ðϕ; θÞ.
In the HK limit [the boundary of the disk in Fig 2(a)]

there are four classical phases: the ferromagnet (FM),
antiferromagnet (AFM), stripy, and zigzag as in
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Figs. 2(b)–2(e). These states occupy large regions of phase
space even as Γ is introduced, with the AFM and FM states
covering most the phase diagram. Finite Γ breaks the
accidental spin rotational symmetry enjoyed by the FM and
AFM states in the (classical) HK limit, pinning the order-
ings to fixed spatial direction. For Γ > 0, the AFM state
becomes pinned along the [111] direction whereas the FM
state lies in the plane perpendicular to [111] with all
directions degenerate. The stripy and zigzag phases have
the spins in directions x, y; or z locked to the orientations of
the stripe and zigzag pattern, tilting slightly away from the
stripe and zigzag direction as Γ becomes nonzero.
The effects of Γ are most evident where a large

classical degeneracy is present, such as near the Kitaev
points at ðϕ; θÞ ¼ ð�π=2; π=2Þ and near (0,0), where we

only have the bond-dependent Γ term. Here, two new
states are introduced: 120° order and an incommensurate
spiral. The 120° order with wave vector Q⃗ ¼ K appears
near the (antiferromagnetic) Kitaev limit at (π=2, π=2).
This is a coplanar spiral, with the spins lying in the
plane perpendicular to [111]. The spins are at relative
angles 0, �2π=3 on the same sublattice [as shown in
Fig. 2(f)], with the relative angle between sublattices
unconstrained. An additional degenerate point appears at
ðϕ; θÞ ¼ ð3π=4; cos−1ð1= ffiffiffi

3
p ÞÞwhere J ¼ −K ¼ −Γ, with

the 120°, FM, and zigzag phases meeting at a single point
[40]. The second large region of zigzag phase appearing
when Γ ≫ jJj, jKj has the spins predominantly oriented
along the [11̄ 1̄], [1̄11̄], and [1̄ 1̄ 1] directions, tilting away
slightly as one explores the phase. The IS phase remains
coplanar despite the Q⃗ vector varying throughout the
phase. The magnitude of the IS wave vector lies in the
range 1:2 < jQ⃗j < 1:8 as shown in Fig. 2(g).
Exact diagonalization.—To gain an understanding of

the features of the classical results that carry over to the full
quantum mechanical model, we have performed exact
diagonalization. We consider a 24-site cluster that has
been used previously to study the HK model [13,18,19],
providing a reasonable description of the phases found at
the classical level as well as the Kitaev spin liquids. In the
HK limit, the existence of a local spin rotation [13,41] that
maps J → −J andK → K þ 2J gives four well-understood
magnetic limits in addition to the two exactly solvable
Kitaev points. These are the FM, AFM, and their zigzag
and stripy images under the mapping. This transformation
is no longer useful as Γ is included [42], but the phases
surrounding these points can still be identified with each
respective limit. While the IS phase is unlikely to be well
represented on such a small cluster, the remaining phases
such as the 120° phase are compatible with the cluster
geometry. We note that the transformation used to relate
Γ > 0 to Γ < 0 no longer applies in the quantum case, and
so both regions must be analyzed separately.
To identify the phase boundaries, we have computed the

second derivatives of the ground-state energy, −∂2E=∂ϕ2

and −∂2E=∂θ2, looking for singular features that indicate
changes in the ground-state characteristics. Phases con-
taining exactly solvable or well-understood points, such as
the zigzag, stripy, AFM, FM, and the Kitaev spin liquids
can be readily identified. The remaining phases were
identified by examining the spin-spin correlation functions
hSαi Sβj i, primarily through the static structure factor

SQ ¼ 1

N

X
ij

eiQ⃗·ðr⃗i−r⃗jÞhS⃗i · S⃗ji (8)

in both the original basis and after applying the local spin
rotation discussed above [13]. The resulting phase dia-
grams for Γ > 0 and Γ < 0 are presented in Fig. 3, with
the structure factor for each phase plotted using the colors
from Fig. 2(a) and then overlayed. Contours indicating

FIG. 2 (color online). (a) Combined Luttinger-Tisza and single-
Q analysis. Solid colors correspond to exact classical ground
states from Luttinger-Tisza while the region indicated by the
white dashed line is the single-Q results. [(b)—(f)] Ground-state
spin configurations in each phase. (g) Magnitude of the ordering
wave vector Q⃗ in the IS phase.
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lines of constant SQ in each phase are also shown. The
phase diagrams bear a remarkable resemblance to the
classical results, with the gross features of the phase
diagram preserved for both Γ > 0 and Γ < 0.
While the new 120° phase was identified, the results are

less distinctive in the regions where the Luttinger-Tisza

approach failed. Because of the suggestion of incommen-
surate phases from the classical analysis, it is likely that the
small size of cluster used may not properly capture the
behavior in this region. Nevertheless, in the classical IS
region exact diagonalization shows a spiral phase (Sp) with
correlations at wave vector Q⃗ ¼ K=2, the ordering with the
longest periodicity allowed by the cluster size. This wave
vector has magnitude jQ⃗j ≈ 1.2, roughly in line with the
range prescribed by the classical calculations. The neigh-
boring regions are also well defined, with stripy correlations
for Γ < 0 and zigzag correlations for Γ > 0, as expected
from the classical analysis. While the stripy correlations for
Γ < 0 are quite strong, the corresponding zigzag correla-
tions for Γ > 0 are weak, showing no sharp transition as one
moves into the classical IS region. At the pure Γ limits, the
correlators become short ranged,withmost of the correlators
exactly zero. From these results, we expect the gross features
of the phase diagram to be robust to finite size effects except
perhaps for the wave vector of the spiral phase.
Discussion.—Within the scope of themodel presented, the

zigzag phase observed in Na2IrO3 [2,4,6] appears only when
J isnegative.This isplausible: inEq. (3) take theSlater-Koster
parameters to have the canonical ratios tddσ∶tddπ ¼ 3∶ − 2
(assuming that tddδ ∼ 0) then 2t1 þ t3 ∼ 0 and t1ðt1 þ 2t3Þ <
0 giving J < 0 at leading order in JH=U. Additional con-
tributions to these exchanges, such as on-site oxygen inter-
actions [13] and t2g − eg contributions [18] possibly affect
the details. Further, ab initio calculations of the electronic
band structure of Na2IrO3 [16,17,20] and Li2IrO3 [43]
suggest that second and third neighbor hoppings as well as
trigonal and other structural distortionsmay not be negligible.
Some consequences of further neighbor exchange have been
discussed [14], but a proper treatment is missing—one must
include the orbital dependence of these hoppings that results
in anisotropic exchanges. Inclusion of trigonal and other
distortions allows an additional symmetric off-diagonal
exchange [44], but these have been estimated to be small
experimentally [11]. We further expect that the nearest-
neighbor model dominates over the longer range exchanges,
andso including themshouldnot alter the results qualitatively.
We emphasize that understanding the minimal model

introduced in this work is the first step towards a complete
picture of the honeycomb iridates. Evidence of symmetric
off-diagonal exchange can be seen through anisotropy in the
magnetic susceptibility. From a high-temperature expansion
of the model in Eq. (1), one finds ðΘ⊥−ΘjjÞ=ðΘ⊥þ2ΘjjÞ ¼
Γ=ð3JþKÞ independent of g-factor anisotropy, where Θjj
and Θ⊥ are the Curie-Weiss temperatures for the in- and
out-of-plane susceptibilities. Fitting to experimental data for
Na2IrO3 [1] yields the relation Γ=ð3J þ KÞ ∼ −0:3, show-
ing that if we are near the zigzag regimewhereK ≫ jJj then
there is non-negligible Γ exchange. Given that 120° and IS
order appear in proximity to the zigzag phase, these could be
promising candidates for ordering in other honeycomb
iridates such as Li2IrO3.

FIG. 3 (color online). [(a), (b)] Phase boundaries from exact
diagonalization of a 24-site cluster. Markers indicate the location
of singular features in −∂2E=∂ϕ2 or −∂2E=∂θ2, with lines to
guide the eye along the sharp phase boundaries. Colors [as in
Fig. 2(a)] and contours map magnitudes of the static structure
factor [as in Eq. (8)] for each phase. The Kitaev spin liquid is
shown in orange, whereas the spiral phase is shown in dark gray.
The HK limit lies at the boundary of each disk at θ ¼ π=2.
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existence of the Γ term was discussed based on ab initio
quantum chemistry calculations in Ref. [46].
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