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A new method of computing multipolar exchange interaction in spin-orbit coupled systems is developed
using multipolar tensor expansion of the density matrix in local density approximationþ U electronic
structure calculation. Within the mean field approximation, exchange constants can be mapped into a series
of total energy calculations by the pair-flip approximation technique. The application to uranium dioxide
shows an antiferromagnetic superexchange coupling in dipoles but a ferromagnetic one in quadrupoles
which is very different from past studies. Further calculation of the spin-lattice interaction indicates it is of
the same order with the superexchange and characterizes the overall behavior of the quadrupolar part as a
competition between them.
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Magnetic systems with strong spin-orbit coupling, such
as rare-earth and actinides compounds, have been a
challenging problem for decades due to their complex
magnetic behavior [1]. They display a rich coupled
dynamics of spins and higher ranked moments which
are frequently accompanied by the hybridization with
phonons as is well known in archetypal nuclear fuel
material, uranium dioxide (UO2) [2]. They exhibit silent
phenomena of hidden order phases as observed in URu2Si2
[3], NpO2 [4], and some other systems. They not only have
active orbital degrees of freedom, which make their physics
rich in magnetic properties, but they also possess a large
number of parameters in the form of corresponding intersite
multipolar exchange interactions [1,5–15]. Those complex
multipolar interactions have been suggested as the primary
mechanism that induces those phases.
Unfortunately, efficient computational techniques to

access the multipolar exchange interactions and solve the
corresponding model Hamiltonians are not presently avail-
able. In the 1960s, Schrieffer et al. [5–7] proposed a
framework regarding the exchange interactions mediated
by the Ruderman-Kittel-Kasuya-Yosida mechanism in such
systems. Unlike a traditional spin 1=2 problem where a
simple Heisenberg model describes the low-energy physics
well [16], the orbital degrees of freedom introduce more
complicated couplings, accompanied by large intersite
anisotropy, which makes the problem computationally
difficult [1]. In the 1980s, Cooper et al. [8–15] solved
the Coqblin-Schrieffer Hamiltonian for Cerium compounds
and, in the 1990s, proposed a scheme to compute the
exchange constants via advanced electronic calculations.
Although their works are in good agreement with experi-
ments for selected simple materials, an efficient and
systematic method to calculate the exchange interaction
is still lacking.
In this work, we introduce a new method combined with

electronic structure calculations based on density

functional theory in its local density approximation
(LDA) or including the correction due to the Hubbard U
via the so-called LDAþ U method [17], to compute the
exchange interactions of systems with strong spin-orbit
coupling. It is based on the theorem that multipolar tensor
harmonics form a complete orthonormal basis set with
respect to the trace inner product. Applying this theorem to
the density matrix of the correlated magnetic orbital, well-
defined scalar, dipole, quadrupole, and higher multipoles
can be extracted [1]. By flipping a pair of tensor harmonics
with respect to the ground-state density matrix, we can find
the exchange interaction by relating (or mapping) it to the
total energy cost of the tensor flip (which is obtained by the
LDAþ U calculation).
To test our new method, we use UO2 as a test candidate

due to the presence of dipolar and quadrupolar order in its
ground state. UO2 has been one of the widely discussed
actinide compounds due to its applications in the nuclear
energy industry. It is a Mott insulator with a cubic structure
and well-localized 5 f2 electrons (uranium configuration
U4þ by naive charge counting). Below TN ¼ 30:8 K it
undergoes a first-order magnetic and structural phase
transition where a noncollinear an tiferromagnetic phase
with transverse 3-k magnetic ordering accompanied by the
cooperative Jahn-Teller distortion occurs [19] [Fig. 1(b)].
The two-electron ground state forms a Γ5 triplet holding
pseudospin S ¼ 1 rotation symmetry, making it a good
choice to test our method, as it is a minimal challenge
beyond the S ¼ 1=2 Heisenberg model. A description of a
S ¼ 1 exchange interaction requires the existence of
dipolar and quadrupolar moments, and it is commonly
believed that there are two major mechanisms to induce
exchange coupling: (1) superexchange (SE) and (2) spin-
lattice (SL) interaction. The former contributes to both the
dipole and quadrupole and the latter contributes to the
quadrupole only because of the symmetry of the distortion.
The dominance of SE or SL in affecting the quadrupole
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exchange remains a controversial issue [18–21] [Fig. 1(a)].
Since our method is based on a static electronic calculation,
we do not explore dynamical effects in all their details.
Therefore, separate calculations using the coupled frozen-
phonon and frozen-magnon techniques were performed to
extract the SL coupling constants. Although we have
chosen UO2 as our test sample whose static exchange
interactions originate from the superexchange mechanism,
it should be emphasized that our method should be able to
work for any other types of exchange processes.
A non-Hermitian unit spherical tensor operator is

defined as

YQ
KðJÞ ¼

X

MM0
ð−1ÞJ−Mð2K þ 1Þ2

×

�
J J K
M0 −M Q

�
jJMihJM0j.

We can further define Hermitian cubic tensor harmonics
TQ
KðJÞ ¼ ð1= ffiffiffi

2
p Þ½ð−1ÞQYQ

KðJÞ þ Y−Q
K ðJÞ� and T−Q

K ðJÞ ¼
ði= ffiffiffi

2
p Þ½YQ

KðJÞ − ð−1ÞQY−Q
K ðJÞ� [1]. Since we only focus

on J ¼ 1, the label of J will be omitted in the following.

Based on the irreducible representations of J ¼ 1, we can
classify the cubic tensor harmonics as Ts for rank 0 (scalar),
Tx, Ty, Tz for rank 1 (dipole), and Txy, Tyz, Tzx, Tx2−y2 ,
T3z2−r2 for rank 2 (quadrupole) [18,20,22]. Since the Γ5

triplet exhibits S ¼ 1 symmetry, it is convenient to denote
them using the basis states: jpi, p ¼ þ1, 0, −1. The
ground-state density matrix of a U ion can be expanded by
cubic tensor harmonics: ρi ¼

P
mα

m
i T

m
i , where i is the site

index, m is the projection index for cubic harmonics, and
αmi ¼ trðρ†i Tm

i Þ is the expansion coefficient. Since the
triplet degeneracy of Γ5 is further split below Tc, we can
approximate the ground state as jGSi ¼ j − 1i, the lowest
energy state of an isolated U ion in the 3-kmagnetic phase.
3-k ordering requires the four U sublattice moments all
point in inequivalent (1,1,1) directions, which means the
j − 1i states are defined in different local coordinates for
eachU sublattice [19]. Thus, we need to make a rotation on
each site to ensure everything is in a common global
coordinate. In the global system, the nonvanishing quadru-
pole components of the ground-state 3-k quadrupole order
are xy, yz, and zx. Thus, the model Hamiltonian of the
nearest-neighbor exchange interaction between magneticU
atoms is assumed to be

hEX ¼ hSE þ hSL

¼
X

m;i;j

Cmm
ij Tm

i T
m
j þ

X

n;i;j

Knn
ij T

n
i T

n
j

m ∈ x; y; z; xy; yz; zx; n ∈ xy; yz; zx; (1)

where (i, j) are the nearest-neighbor site indices and (Cmm
ij ,

Knn
ij ) are the exchange constants from SE and SL, respec-

tively. Couplings between tensor operators with different
symmetry indices are prohibited by cubic symmetry. Since
the coupling in hSL is a dynamical effect, we will only focus
on the hSE part here and leave the hSL part to a later
discussion. The energy of hSE under the mean field
approximation is E0 ¼ hhSEi≃ 2

P
m;i;jC

mm
ij hTm

i ihTm
j i.

Suppose we make a transformation of the tensor compo-
nents of the density matrices on U sublattices (i, j) in the
same unit cell, say in the components of Txy

i and Txy
j :

αxyiðjÞ → α
0xy
iðjÞ. If so, hTxy

iðjÞi → hTxy
iðjÞi

0 ¼ hTxy
iðjÞi þ δhTxy

iðjÞi
with δhTxy

iðjÞi ¼ ðα0xy
iðjÞ − αxyiðjÞÞ. When we calculate the

energy difference between the transformed and original
configurations, (E

0 − E0Þ ¼ ðhhSEi0 − hhSEi), one can
easily obtain a relation which is also true in general for
other exchange constants:

Cmn
ij ¼ 1

8

δ2Emn
ij

δhTm
i iδhTn

j i
; (2)

where δ2Emn
ij ¼ ðδEmn

ij − δEm
i − δEn

j Þ is the interaction
energy of the transformed pair, δEm

i ¼ ðEm
i − E0Þ is the

(a)

(b)

FIG. 1 (color online). (a) Magnetic moments of dipole (arrows)
and quadrupoles (disks) in the 3-k structure. (b) The energy
splitting of low lying states of UO2 [19]. The 3H and 3F states of
the free U4þ ion is split into 3H4 multiplets and other excited states
by spin-orbital coupling and further split into the Γ5 triplet ground
state by crystal fields. Inside the parentheses are their degeneracy.
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energy cost from making a transformation on the Tm
i

component, and, similarly, δEmn
ij ¼ ðEmn

ij − E0Þ is the
energy cost from making transformations on both Tm

i
and Tn

j components. The prefactor ð1=8Þ ¼ ð1=4Þ ×
ð1=2Þ comes from the correction for the number of bonds
between the U sublattice (i, j), the mean field factor, as
well as any geometric or trigonometric factor due to the
noncollinear order.
The basic idea of our method is to make the above

transformations on the density matrices of the correlated
magnetic ions in the LDAþ U calculation. We then
perform just one iteration in the self-consistent loop (to
avoid any change in the input density matrices) and
compute the correlation energy δ2Emn

ij from the resulting
band energies [16] as prescribed by the Andersen force
theorem [23]. Obviously, a single exchange constant will
need at least four values: no change (E0), single-site change
(Ei, Ej), and double-site changes (Eij). The choice of the
transformation has to preserve the symmetry of the crystal
field, the charge density, and the magnitude of the magnetic
moment to prevent any unwanted energy cost. A reasonable
choice is to “flip” the orientation of magnetic moment by
adding a minus sign on the expansion coefficient of the
corresponding tensor component. When this is done, δhTm

i i
is always −2hTm

i i, which is equivalent to making a π
rotation on the (x, y, z) components of the dipole and a π=2
rotation on the (xy, yz, zx) components of the quadrupole.
To generate density matrices that are compatible with the

single-particle based LDAþ U calculation, we introduce
the reduced density matrix (RDM) as a useful single-
particle approximation to the Γ5 states [24] It is fulfilled by
replacing the self-consistent density matrices by the pure
jΓ5;−1i RDMs on all uranium sites and treating them as
the true ground state due to their identical symmetry and
similar physical properties. We assume that the multipolar
exchange Hamiltonian in spin-orbit coupling f-orbital
space is built by replacing all tensor operators, density
matrices, and mean values in the S ¼ 1 space to their
corresponding single-particle RDM: hTm

i i → hT m
i i,

hρii → hDii. The single-particle exchange Hamiltonian
shares the same exchange constants as the S ¼ 1 two-
particle version. Two things to notice here are (1) the RDM
exhibits J ¼ ð5=2Þ⊕ð7=2Þ symmetry instead of S ¼ 1 and
this means the rotation from local coordinates to the global
coordinates has to be made in S ¼ 1 space, or else the
pseudospin quasiparticle description will be violated, and
(2) the RDM replacement will rescale the length of an
operator, i.e., trðT †T Þ ≠ trðT†TÞ. Therefore, hT m

i i ¼
trðD†Tm

i Þ is different from hTm
i i ¼ trðρ†Tm

i Þ. So one has
to be cautious when using Eq. (2).
The coupling constants can be simplified by symmetry to

the form Cm;n
i;j ¼ Cm;nðRÞ ¼ Cd=q

0 ½1− 2ð1− χd=qc Þτmτn�δm;n,
where d=qmeans dipole or quadrupole and τ ¼ R=R is the
direction vector between (i, j). These constants are shown
in Table I, where the isotropic and anisotropic parts are

described by Cd=q
0 and χd=qc , respectively [18]. With the

comparison to other studies, the dipole part is similar, but
the quadrupole part gives the opposite result from past
calculations obtained by the best fit with experiments
[20,21]. Not only is the anisotropy effect much smaller,
but the sign is also different, which means the quadrupoles
tend to be ferromagnetic. It also means that the SL effects
must be as important as the SE and their combination
makes the whole system antiferromagnetic.
To explain the behavior of the quadrupolar part, we need

to include the effect of the dynamic contribution from the
SL. The coupling between spins and optical phonons can
be written as

HSL ¼
X

q;n;j

Vnðq; jÞTnðqÞuðq; jÞ;

where TnðqÞ ¼ P
RT

nðRÞeiq·R, uðq; jÞ ¼ ½a†ð−q; jÞ þ
aðq; jÞ�; and a†ðq; jÞ is the creation operator of a phonon
with wave vector q in mode j. Using the virtual phonon
description, the SL exchange constant of hSL can be
approximated as

Kn;nðqÞ≃X

j

jVnðq; jÞj2
hωðq; jÞ − ϵ0;

where ωðq; jÞ is the phonon frequency and ϵ0 is the on site
exchange energy which should be subtracted [18]. The
variables uðq; jÞ and ωðq; jÞ have been calculated in one of
our earlier works [25] and can be fitted to the entire
Brillouin zone using a simple rigid-ion model [26,27]. If we
further assume the quadrupoles only couple to ta2g and tb2g
quadrupolar distortions of the O cage around each U ion,
the coupling constants are assumed to have the form
Vnðq; jÞ ¼ γaψ

n
aðq; jÞ þ γbψ

n
bðq; jÞ, where γa=b are the

TABLE I. Comparison between our calculated exchange
interaction parameters using the LDAþ U method with U ¼
4.0 eV and J ¼ 0.7 eV and the existing experimental fits. Cd

0 ,
Cq
0 ,K

q
0 are inunitsofmeV;othersaredimensionless.Becauseall the

works use different models to simulate the SL part, there is no
appropriatevalues for them (labeled by*). Reference [21] obtained
SLvia a fully dynamic calculationwith a long-range and frequency
dependence. Note also that Ref. [18] assumes the quadrupole
couplingonlycomesfromSLwitharealspaceexchangeconstantof
the 3-k symmetric form:KΓ

ij ¼ K0eiqΓðRi−RjÞ. Reference [19] only
calculates the SE part. Their parameters were obtained via the
integrals of Coulomb interaction directly and has no a simple
anisotropy form.

Reference Cd
0 χdc Cq

0 χqc Kq
0 χqK

Our Letter 1.70 0.3 −3.10 0.90 2.6 1.18
[21] 3.1 0.25 1.9 0.25 * *
[18] 1.25 0.8 0 0 0.33 *
[19] ∼1 * ∼0.1 * × ×
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parameters to be determined, ψn
a=bðq; jÞ are the inner

products (projection) between the phonon distortion
uðq; jÞ and ta=b2g distortion, and uðq; jÞ can be regarded
as the distortion due to a phonon mode [28]. We estimate
the parameters γa=b by using the following coupled
frozen-phonon and frozen-magnon techniques. (1) Make
a ta=b2g distortion of the O cage around a U ion. (2) Flip a
particular tensor component of the single-ion RDM on a
particular site. (3) Calculate the correlation energies,
δ2Emn

a=b ¼ ½δEmn
a=b − δE0n

a=b − δEm0�, where the first super-
script is the symmetry index of the quadrupole and the latter
index is of ta=b2g , so δ2Emn

a=b is the extra energy of making the
“flipþ frozen phonon distortion” simultaneously com-
pared to the energies of the individual flip plus the
individual “frozen-phonon distortion.” (4) Then, the param-
eters are roughly γa ∼ δ2Emn

a =
ffiffiffi
2

p hTmiψn
a and γb ∼

δ2Emn
b =hTmiψn

b . There is a factor
ffiffiffi
2

p
in γa because when

we make the same displacement of each coordinate
component, the length of the total displacement is

ffiffiffi
2

p
larger than tb2g. By assuming the unit of phonon vibration

about 0.014 Å (as is the static Jahn-Teller distortion
[19]) and making a t2g distortion 3% of the lattice constant,
we have γa ¼ 34 meV and γb ¼ 48 meV. We can access
nearest-neighbor constants by calculating Kn;nðq; jÞ at
q ¼ ½0; 0; 0� and q ¼ ð2π=aÞ½1; 0; 0�, and by a subsequent
fit to a cosine function with the on site exchange energy
assumed to be the average of the curve [18]. We then
have Km;n

i;j ¼ Km;nðRÞ ¼ Kq
0½1 − 2ð1 − χqkÞτmτn�δm;n with

Kq
0 ¼ 2.6 meV and χqk ¼ 1.18.
Combined with the superexchange contribution and

using the Green’s function method with a random phase
approximation [18], we calculate the magnetic excitation
spectrum that is shown in Fig. 2. We find that the values and
the characteristics of our results are basically in agreement
with experiments. The major difference is the disappear-
ance of anticrossing at a few q points and much larger
anisotropy (gap) at the X point. The disappearance of the
anticrossing is reasonable because it comes from the
coupling between the magnon and phonon branches. As
for the overestimated anisotropy at the X point, it is
believed to come from the oversimplified SL model in
our calculation. We have plotted the spin or quadrupolar
wave spectrum by enforcing the overall quadrupole cou-
pling to have 3-k symmetry as in Ref. [21] with the
parameter K0 ¼ 0.5 meV (which is almost the same value
as our isotropic part) and it gives a much smaller gap which
fits the experiments well (see Fig. 2). It demonstrates that a
SL model which makes the whole quadrupole coupling
to have 3-k symmetry will be helpful in fitting the
experiment but, in this case, the simple form of our model
is also lost.
In conclusion, we have developed a new and efficient

method for computing the exchange interactions in systems
with strong spin-orbit coupling. With its application to
UO2, the superexchange mechanism is found to have a very
interesting ferromagnetic quadrupolar coupling which has
not been previously reported. We also performed estimates
of the spin-lattice coupling via a similar technique and the
overall behavior is accounted for by combining both
effects. An accurate description of the spin-lattice inter-
action is still an issue and will be a subject for future work.
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