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We investigate the photon statistics, entanglement, and squeezing of a p-n junction sandwiched between
two superconducting leads and show that such an electrically driven photon pump generates correlated and
entangled pairs of photons. In particular, we demonstrate that the squeezing of the fluctuations in the
quadrature amplitudes of the emitted light can be manipulated by changing the relative phase of the order
parameters of the superconductors. This reveals how macroscopic coherence of the superconducting state
can be used to tailor the properties of a two-photon state.
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The realization of solid-state photon sources that are
capable of on-demand generation of entangled photon pairs
is highly desired for quantum-information processing and
communication [1], as well as for high-precision measure-
ments [2–4]. Such two-photon processes are inherently
nonclassical; i.e., they cannot be expressed naturally in
terms of simple coherent states. Pairs of entangled photons
are routinely generated by parametric down-conversion
[5,6]. In this approach, a laser pumps a nonlinear optical
crystal, leading to extremely low overall conversion effi-
ciencies from electrons pumped into the laser to photon
pairs out of the nonlinear crystal. These obstacles could be
overcome by the two-photon counterpart of a light-emitting
diode (LED), i.e., a device into which electrons are injected
and which emits entangled photon pairs directly, leading to
squeezed light. The overall quantum efficiency of such a
device could be close to unity. Recently, entanglement of
an electrically driven source of photon pairs was demon-
strated, based on the recombination of biexcitons [7].
Cooper pairs are an alternative to biexcitons. In both cases,
one expects that upon radiative recombination, the entan-
glement of the electrons is inherited by the two-photon final
state. In distinction to biexcitons, Cooper pairs form
coherent two-electron states that scatter weakly among
each other, are only weakly affected by impurities, and,
quite crucially, can be manipulated externally, e.g., using
SQUID geometries, Andreev reflection at applied magnetic
fields, or electrically tunable Josephson coupling. The
proximity effect at superconductor-semiconductor junc-
tions was indeed demonstrated for InAs/InAlAs coupled
to niobium [8]. This is in accordance with the theoretical
prediction [9,10] and observation [11–14] of an enhanced
luminescence rate at such an interface. The exciting physics
of a Josephson LED was discussed in the context of
quantum-dot [15–18] and solid-state-based devices [19].

In this Letter, we show that a superconductor-LED-
superconductor heterostructure is a source of nonclassical
light and, most importantly, demonstrate how one can
manipulate the two-photon coherence by varying the
relative phase between the two superconductors that are
coupled to the p-n junction. The key physical idea of our
theory can be rationalized as follows: the nonequilibrium
dynamics of the photon pump can be described in terms of
an effective photon Hamiltonian that is similar to the
Hamiltonian of a quantum parametric amplifier:

HPA ¼ ωb†bþ ðζe−ieV0tb† þ iγe−i2eV0tb†b† þ H:c:Þ;
(1)

where b† is a photon creation operator, ω is the photon
frequency (we set ℏ ¼ 1), and the coefficients ζ and γ arise
from pumping photons electronically via superconducting
leads with applied potential difference eV0. The resulting

FIG. 1 (color online). The schematic setup of a squeezed light-
emitting diode consists of a p-n junction with proximity induced
superconductivity present in both valence (v) and conduction (c)
bands. Electronic coherence of Cooper pairs is transferred to the
photons, leading to two-mode squeezing of the quadrature
operators A�

qλ in vacuum controlled by the relative phase of
the two superconductors Δφ ¼ φc − φv. Entangled photon pairs
of frequency of the order of the band gap ωq ≈ εc − εv are emitted
in the active region (red star).
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photon state of such a system is squeezed jψphotonðtÞi ∼
expðγtb†b† − γ�tbbÞj0i [20]. We show that the pair pro-
duction amplitude γ ∼ jΔvjjΔcjeiΔφ is determined by the
gap of the two superconductors (see Fig. 1) and depends on
the phase difference Δφ between them. Thus, by changing
the relative phase Δφ of the Cooper-pair wave functions,
e.g., via an external field in a SQUID geometry, one can
control the squeezing in a detuned parametric amplifier
[21]. This demonstrates how the coherence of the Cooper
pair, together with the macroscopic coherence of the
superconducting state, can be used to tailor the properties
of a two-photon state. In what follows, we substantiate this
qualitative picture by explicit many-body calculations,
show that the squeezing of the resulting photon state can
indeed be manipulated by changing Δφ, and determine the
two-photon correlation function that emerges as a result of
the superconducting coherence.
The setup of our system is sketched in Fig. 1. We couple

a p-n junction on each side to superconducting leads and
apply an external voltage. The system is characterized by
the Hamiltonian

H ¼ Hph þHc þHv þ
X
k;q;σ;λ

ðgb†qλv†k−qσckσ þ H:c:Þ; (2)

where Hph ¼
P

q;λω
0
qb

†
qλbqλ is the bare photon

Hamiltonian. We assume emission of linearly polarized
photons with λ ¼ �, but the case of circular polarization,
such as that which occurs, for example, in GaAs due to
spin-orbit coupling [16], is a straightforward generalization
of our model. The electronic part Hc þHv describes the
leads consisting of a superconducting conduction band on
the right, with creation operators c†kσ, band dispersion εck
and proximity induced superconducting gap Δc, and a
superconducting valence band on the left, with creation
operators v†kσ , band dispersion εvk, and superconducting
gap Δv. If we include the respective chemical potentials μc
and μv with μc − μv ¼ eV0, given by the applied voltage
V0, we have (α ¼ c or v)

Hα − μαNα ¼
X
kσ

ðεαk − μαÞα†kσαkσ

þ
X
k

ðΔαα
†
k↑α

†
−k↓ þ H:c:Þ: (3)

The coupling between photons and electrons is described
by a coupling constant g and leads to emission of a photon
for each electron transition from conduction to valence
band. We give an estimate for g in the Supplemental
Material [22].
We first derive an effective photon Hamiltonian Heff for

this heterostructure. Technical details are provided in
the Supplemental Material [22]. Its purpose is to elucidate
the nature of the photon dynamics and to obtain a tool
to investigate the properties of the photon subsystem.

The effective Hamiltonian is designed to generate, up to
second order in perturbation theory, the same Heisenberg
equations of motion for the photonic operators as the
full Hamiltonian. We thus determine the equations of
motion for the photon operators b†kσðtÞ perturbatively in
the photon-electron coupling constant g and deduce Heff
from them. We deal with a nonequilibrium problem in
steady state. The external bias voltage that drives the
system out of equilibrium leads to time-dependent phases
in the effective Hamiltonian, and we obtain

Heff ¼
X
q;λ

fωqb
†
qλbqλ

þ ½ge−ieV0tζqðtÞb†qλ þ g2e−2ieV0tγqb
†
qλb

†
−qλ

þ H:c:�g: (4)

The effective Hamiltonian Heff has the form of the
Hamiltonian of the quantum parametric amplifier in
Eq. (1) and describes electronic pumping of photons via
coupling to superconducting leads. It consists of three parts
that correspond to different aspects of the junction.

(a)

(b) (c)

FIG. 2 (color online). (a) Three processes that give rise to the
peaks in jh ~bqλ ~b−qλij are quasiparticle tunneling from conduction to
valence bands and the reverse process, leading to the peaks at
ωq ¼ eV0 � ðjΔcj þ jΔvjÞ, as well as tunneling of Cooper pairs,
which gives the peak at ωq ¼ eV0. (b),(c) Photon coherence
h ~bqλ ~b−qλi at time t ¼ 0 and at (b) zero temperature and (c) finite
(photon) temperature Tph ¼ eV0. Other parameters are chosen as
eV0 ¼ 2eV,Δc ¼ 1 meV,Δv ¼ 1 meV,Δφ ¼ 0, g2ρc ¼ Δc=20,
and η ¼ 0.1 meV. The plot shows the real part (solid red line),
imaginary part (dashed blue line), and absolute value (dash-dotted
black line).
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The first part is the photon energy renormalized by the
interaction ωq − ω0

q ∝ jgj2, which is of no fundamental
importance to our analysis.
The second term describes the effect of the device being

a source of single photons. It also occurs in the normal
state, where it describes radiation of the usual light-emitting
diode and produces single photons at a constant rate. In the
presence of superconducting leads and the macroscopic
electronic coherence, however, this term also contributes to
the emergence of two-photon coherence. The different
physical processes that contribute to the coherence are
depicted in Fig. 2(a). The “coefficients” ζqðtÞ contain
fermionic creation and annihilation operators. As a conse-
quence of the nonequilibrium state, these operators depend
on the initial values of the fermionic operators well in the
past, where we assume that the system was decoupled and
in local equilibrium. They act as random external (non-
commuting) fields, which arise from the coupling of the
photons to the fermionic bath, and commute with the
photon operators ½bqλ; ζ†q� ¼ 0 but not with their Hermitian
conjugate ½ζq; ζ†q� ≠ 0. At T ¼ 0 in the superconducting
state, they are defined by correlators such as (for details,
consult the Supplemental Material [22])

Z
t

−∞
dt0dt00hζqðt0Þζ−qðt00Þieiðωq−eV0−i0þÞðt0þt00Þ

¼ −2X
k

uckvcku�vkv
�
vke

2iðωq−eV0Þt

ðωq − eV0 − i0þÞ2 − ðEck þ EvkÞ2
: (5)

They contain the superconducting energy dispersions
Eαk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεαk − μαÞ2 þ jΔαj2

p
and the BCS coherence fac-

tors uα;k and vα;k, and we have neglected corrections to the
quasiparticle energies by photon momenta Eαkþq ≈ Eαk.
Most important is the third term, where at T ¼ 0 holds

γq ¼
X
k;s¼�

− 1
2
suckvcku�vkv

�
vk

ðωq − eV0 − i0þÞ þ sðEck þ EvkÞ
: (6)

This term is responsible for the fact that Heff does have the
form of a parametric amplifier, producing entangled photon
pairs. Entanglement is meant in the sense that the emitted
photon pairs have opposite momentum and the same
chirality. If the coefficients ζ†q and ζq were numbers and
would not contain fermionic operators of the initial state,
we would immediately see that Eq. (4) describes a system
that produces squeezed light [20]. The subsequent analysis
shows that this is still the case, even with the more
complicated form of Heff .
To analyze whether the emitted light is squeezed, we

determine the uncertainties of the quadrature amplitudes of
the electric field

Eðx; tÞ ¼
X
q;λ

iEωq
ð ~bqλϵλeiðq·x−ωqtÞ − H:c:Þ; (7)

with ~bqλðtÞ ¼ bqλðtÞeiωqt, Eωq
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωq=2ϵ0ϵrL3

q
, vacuum

and relative permittivity ϵ0 and ϵr, volume L3, and linear
polarization vector ϵλ. We consider the fluctuations of the
two-mode quadrature operators

A�
qλ ¼ N �½ ~b†qλ þ ~b†−qλ � ð ~bqλ þ ~b−qλÞ�; (8)

with N þ ¼ 2−3=2 and N − ¼ −i2−3=2. In vacuum, where
hb†qλbqλi ¼ 0, it follows directly from the bosonic commu-
tation relations that (for details, see the Supplemental
Material [22])

hðΔA�
qλÞ2i ¼

1

4

�
1� 2Reh ~bqλ ~b−qλi

�
; (9)

where ðΔAÞ2 ¼ ðA − hAiÞ2. Here, h ~bqλ ~b−qλi depends on
the superconducting phase difference Δφ and can easily
be determined from our model. The key finding is that
the expectation value [see Eq. (12)] that determines the
uncertainties of the quadrature amplitudes of A�

qλ can be
changed if one changes the relative phase of the super-
conductor. If we picture the squeezing as an uncertainty
ellipse (see Fig. 1), changing Δφ simply rotates it.
Next, we address the problem of squeezing and photon

statistics using a more rigorous approach that allows more
easily for a generalization to higher order processes and
feedback of the photon system onto the superconducting
leads. To this end, we use the Schwinger-Keldysh formu-
lation [23] of the Hamiltonian in Eq. (2) and integrate out
the fermionic degrees of freedom to arrive at an effective
photonic action on the Keldysh time contour given by

Seffph ¼
Z

∞

−∞
dtdt0

X
q;q0;λ

B̄qλðtÞD−1
qq0;λðt; t0ÞBq0λðt0Þ; (10)

where BqλðtÞ ¼ ðbclqλ; b̄cl−qλ; bqqλ; b̄q−qλÞT carries both the
Keldysh fcl; qg and the Nambu structures. The photonic
propagator

D−1 ¼ D−1
0 − Πel − Πbath (11)

acquires self-energy corrections due to the coupling to
the superconducting leads Πel as well as a coupling to an
external (Markovian) photon bath Πbath, which leads to a
finite photon linewidth η [24,25]. We consider one-loop
processes such as those shown in Figs. 3(a) and 3(b).
Importantly, the electronic coherence of the Cooper pairs is
transferred to the photons via the anomalous elements of
the photon self-energy [see Fig. 3(b)].
We first focus on the zero temperature limit in both the

leads and the photonic system, and calculate the resulting
photonic coherence between modes of opposite momenta
by inverting the Dyson equation (11) up to second order in
the electron-photon coupling g to find
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h ~bqλðtÞ ~b−qλðtÞi ¼
X
k

2g2uckvcku�vkv
�
vke

2iðωq−eV0Þt

ðνq − iηÞðνq þ Ek − iηÞ : (12)

Here, νq ¼ ωq − eV0 is the photon frequency measured
relative to the applied potential difference and the location
of one of the resonances is determined by the Bogoliubov
dispersion Ek ¼ Eck þ Evk. The product of BCS coherence
factors uckvcku�vkv

�
vk ¼ jΔcjjΔvjeiΔφ=4EckEvk depends on

the relative phase Δφ ¼ φc − φv between the two super-
conductors. Using the Keldysh approach, we can thus
confirm the above results for the phase-dependent quadrature
amplitudes and our ability to manipulate light squeezing by
coupling to the superconducting phase difference Δφ. Note
that in the rotating frame of the photon fields, the squeezing
ellipse rotates with the detuning off the central (Cooper-pair)
peak like h ~bqλðtÞ ~b−qλðtÞi ∼ exp½2iðωq − eV0Þt�.
While we can perform the momentum sum numerically

for the most general parameters, here we make a simplify-
ing assumption of parabolic band dispersions εck ¼
k2=2m�

c þD=2 and εvk ¼ −k2=2m�
v −D=2 with effective

masses m�
c; m�

v, and band gap D. For a symmetric choice
jΔcj¼jΔvj≡jΔj, m�

c ¼ m�
v, μc ¼ D=2þ δ, and μv ¼ −μc,

where δ defines the (quasi-)Fermi energies in the two bands
related to the applied voltage by eV0 ¼ Dþ 2δ, we can
evaluate the correlator analytically. The summation over
momenta in Eq. (12) in this case yields

h ~bqλðtÞ ~b−qλðtÞi
¼ g2ρcjΔj2eiΔφe2iðωq−eV0Þt

×
2 arcsinð~νq − i~ηÞ þ π

h
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð~νq − i~ηÞ2

q i

ðνq − iηÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jΔj2 − ðνq − iηÞ2

q ;

(13)

where ρc denotes the fermionic density of states at the
Fermi surface, and ~νq ¼ νq=2jΔj and ~η ¼ η=2jΔj are
dimensionless frequencies and decay rates.
In Fig. 2(b), we present the zero temperature expectation

value h ~bqλðtÞ ~b−qλðtÞi of Eq. (13) for a particular choice of
parameters. The function exhibits two peaks, one at
frequency ωq ¼ eV0 − jΔcj − jΔvj and one at ωq ¼ eV0.
The lower frequency peak corresponds to quasiparticle

tunneling from the conduction to the valence band, while
the peak at ωq ¼ eV0 is due to tunneling of Cooper pairs.
The sum over momenta only broadens the quasiparticle
peak. Both processes involve the emission of photons and
are thus possible at T ¼ 0 in the absence of a finite photon
density.
We have also obtained results for the photon coherence

in the presence of a finite temperature Tph > 0 thermal
background of photons. As shown in Fig. 2(c), a third peak
at frequency ωq ¼ eV0 þ jΔcj þ jΔvj appears at photon
temperature Tph > 0, which corresponds to the absorption
of photons from the thermal background and transfer of
quasiparticles from the valence to the conduction band. The
three processes are schematically depicted in Fig. 2(a).
In addition, we analyze the photon-photon correlation

functions by coupling the photons BqðtÞ to external
counting fields. As expected, the density correlations
between the photons of the same momentum hhnqλnqλii≡
hn2qλi − hnqλi2 obey the thermal relation hhnqλnqλii ¼
hnqλi½hnqλi þ 1�. These correlations simply reflect the
tendency of bosonic particles to bunch. Two photons with
the same momentum q must have been emitted in uncorre-
lated events since Cooper pairs have total momentum zero.
In the presence of electronic coherence, however, there

also appear density correlations between photons of oppo-
site momenta

hhnqλn−qλii ¼ jgj4
X
k;k0

jΔcj2jΔvj2
16EckEck0EvkEvk0

×
1

ðν2q þ η2Þðνq þ Ek þ iηÞðνq þ Ek0 − iηÞ ;

(14)

where νq ¼ ωq − eV0 and Ek ¼ Eck þ Evk. These corre-
lations are inherited from the coherence of the Cooper pairs
within the BCS many-body state. As before, we observe the
asymmetric peak structure at zero temperatures with two
peaks occurring at ωq ¼ eV0 − jΔcj − jΔvj and ωq ¼ eV0

corresponding to tunneling of quasiparticle and Cooper
pairs from the conduction to the valence band. Again, at
finite (photon) temperatures, a third peak emerges at ωq ¼
eV0 þ jΔcj þ jΔvj due to the correlated absorption of
photons from the thermal background imprinting density
correlations between nqλ and n−qλ.
In summary, we have shown that a p-n junction in

proximity to two BCS superconductors can be operated to
emit squeezed light, produces entangled photon pairs, and
affects the photon density correlations. Squeezing occurs
between modes of opposite momenta and results from a
transfer of the electronic coherence of the Cooper pairs to
the photons. The squeezing angle is controlled by the phase
difference between the two superconductors. This squeezed
light-emitting diode enables us to use the macroscopic

(a) (b)

FIG. 3. (a),(b) Normal and anomalous diagrams contributing to
the dressed photon propagator D ¼ D0 þD0ΠelD0, where D0

denotes the free photon propagator andΠel the photon self-energy
due to coupling to electrons. Solid (dashed) lines denote con-
duction (valence) electron propagators, and wiggly lines denote
photon propagators.
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coherence of superconductors to manipulate the photon
coherence in a two-photon pump.
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